

ISSN-1560-604X
Thermology international

Volume 16 (2006)
Number 3 (July)

10th European Congress of Thermology

International

History of the European Congress of Thermology
Programme & Abstracts of the
10th European Congress of Thermology in Zakopane

Published by the

European Association of Thermology
and the
Austrian Society of Thermology

This journal is indexed in
EMBASE/Excerpta Medica

THERMOLOGY INTERNATIONAL

Volume 16 (2006)

Number 3 (July)

**Published by the
Austrian Society of Thermology
and European Association of Thermology**

Indexed in
Embase/Excerpta Medica

**Editor in Chief
K. Ammer, Wien**

Editorial Board

M.Anbar, Buffalo	I.Fujimasa, Tokyo	Y.S.Kim, Seoul
I.Benkö, Budapest	S.Govindan, Wheeling	R.C.Purohit, Auburn
R.Berz, Burgrieden-Rot	J.R.Harding, Newport	O.Rathkolb, Wien
L.de Thibault de Boesinghe, Gent	K.Mabuchi, Tokyo	E.F.J.Ring, Pontypridd
A.DiCarlo, Rom	H.Mayr, Wien	H.Tauchmannova, Piestany
J.-M. Engel, Bad Liebenwerda	A.Jung, Warsaw	B.Wiecek, Lodz

**Technical/ Industrial Thermography
Section Editor: B. Jones, Derby**

Organ of the American Academy of Thermology

Organ of the European Association of Thermology

Organ der Deutschen Gesellschaft für Thermologie

Organ of the Polish Society of Thermology

Organ der Österreichischen Gesellschaft für Thermologie

Organ of the UK Thermography Association (Thermology Group)

Instruktionen für Autoren

Manuskripte müssen dem Schriftleiter zugesandt werden und dürfen noch nicht veröffentlicht sein.

Die Manuskripte von Übersichts- und Originalarbeiten werden 2 unabhängigen Begutachtern vorgelegt, die über Annahme oder Annahme nach Änderung des Manuskriptes entscheiden.

Mit der Annahme der Arbeit gehen alle Rechte an den Herausgeber über.

Verantwortlicher Schriftleiter:

Prof. DDr. Kurt Ammer

Österreichische Gesellschaft für Thermologie
Hernalser Hauptstr.204/14 A-1170 Wien, Österreich,
Phone &:Fax (43 1) 480 54 23 :
e-mail:KAmmer1950@aol.com

Publiziert werden:

Editorials

Übersichten

Originalien

Berichte

über interessante Publikationen aus dem Gebiet Thermologie

Mitteilungen der Amerikanischen Akademie für Thermologie

der Britischen Assoziation für Thermographie

(Thermologie Gruppe);

der Deutschen Gesellschaft für Thermologie;

der Europäischen Assoziation für Thermologie;

der Polnischen Gesellschaft für Thermologie ,

der Rumänischen Gesellschaft für Thermographie

der Österreichischen Gesellschaft für Thermologie

Veranstaltungshinweise

Manuskripte sollen mit den Empfehlungen des Internationalen Komitees der Herausgeber von Medizinischen Zeitschriften (ICMJE) (1,2) im Einklang stehen. Es ist auf eine klare Gliederung der Beiträge vorzugsweise in der Form: Einleitung, Methode, Ergebnisse, Diskussion, Dankesagung, Literatur, zu achten. Jeder Arbeit ist eine Kurzfassung in Deutsch und Englisch voranzustellen. Bis zu 5 Schlüsselwörter sollen den Inhalt der Arbeit zusätzlich charakterisieren.

Tabellen und Abbildungen sollen gesondert dem Manuskript beigelegt werden. Legenden werden auf einem Extrablatt beigegeben.

Die Einreichung der Arbeit auf Diskette unter Angabe des verwendeten Systems ist möglich und erwünscht. Ein Ausdruck des Textes ist der Diskette beizulegen.

Literaturangaben sind auf einem gesonderten Blatt erbeten und sind in der Reihenfolge aufzulisten, in der sie im Text genannt werden. Die Literaturzitate werden durch-

nummeriert; im Text werden nur die entsprechenden Nummern angegeben.

Die nachstehende Beispiele basieren auf dem Format der Amerikanischen Nationalbibliothek für Medizin im Index Medicus. (Eine komplette Liste von Beispielen bei 1).

a.) Zeitschriftenzitate

Namen der Verfasser, Vorname(n) (abgekürzt)(die ersten 6 Autoren müssen angeführt werden, mehr als 6 Autoren werden mit "et al" angegeben), vollständiger Titel der Arbeit, abgekürzter Titel der Zeitschrift, Jahr, Band, Seitenzahlen.

Luther B, Kreyer I, Dobi I. Die Anus-praeter- Thermographie als Methode zur Früherkennung vaskulärer Komplikationen nach Dünndarmtransplantation. ThermoMed 1990; 6: 115-17.

b.) Buchzitate

Name der Verfasser, Vorname(n) (abgekürzt), vollständiger Titel der Arbeit, Herausgeber, Titel des Buches, Ort, Verlag, Jahr, Seitenzahlen.

Gautherie M, Haehnel P, Walter JM, KeithL. Long-Term assessment of Breast Cancer Risk by Liquid Crystal Thermal Imaging. In: Gautherie M, Albert E; editors. Biomedical Thermology. New York: Alan R.Liss Publ;1982. 279-301.

Von Text und Abbildungen werden den Autoren Andrucke zur Korrektur zugesandt. Jeder Autor erhält 20 Sonderdrucke seiner Arbeit kostenlos.

“Thermology international” erscheint 4 mal jährlich. Ein Jahresabonnement kostet 38 €, - ein Einzelheft 12- € plus Porto (4.50 € pro Heft außerhalb Österreichs).

Für Mitglieder der Österreichischen Gesellschaft für Thermologie, der Deutschen Gesellschaft für Thermologie und der Amerikanischen Akademie für Thermologie ist die Zeitschrift im Mitgliedsbeitrag inkludiert.

Literatur

(1)International Committee of Medical Journal Editors. Uniform requirements for manuscripts submitted to biomedical journals. Can. Med Assoc J 1997;156;270-7.

(2) International Committee of Medical Journal Editors. Additional statements from the International Committee of Medical Journal Editors. Can. Med Assoc J 1997;156; 571-4.

Uhlen Verlag Wien,
Ingeborg Machyl, Fachzeitschriftenverlag
Gusenleithnergasse 28a/1, A-1140 Wien

Thermology international

ISSN-1560-604X

Internet: <http://www.uhlen.at/thermology-international>

Contents (INHALTSVERZEICHNIS)

Review (Übersicht)

K. Ammer

European Congress of Thermology 1974-2006: A Historical Review.....	85
(Europäischer Thermologiekongress 1974-2006: ein historischer Rückblick)	

Reports (BERICHTE)

Instruktionen für Autoren.....	82
Instructions for authors.....	84
Scientific Programme of the 10th European Congress of Thermology in Zakopane.....	96
10th European Congress of Thermology: Abstracts.....	99

News in Thermology (THERMOLOGISCHE NACHRICHTEN)

Call for Papers for the QRM' 2007 in Oxford.....	114
Guideline for the preparation of manuscripts for QEM conference proceedings.....	115

T. Schartelmüller

Protokoll der Generalversammlung der Österreichischen Gesellschaft für Thermologie am 10.05.2006 in Wien.....	119
--	-----

Meetings (VERANSTALTUNGEN)

Meeting-Calendar.....	120
-----------------------	-----

Instructions for authors

Manuscripts should be mailed to the editor and should not be submitted elsewhere. All manuscripts (i.e. reviews and original articles) will be read by two independent reviewers. With the acceptance of the paper all copyrights are transferred to the publisher.

Editor in Chief

Prof DDr. Kurt Ammer

Österreichische Gesellschaft für Thermologie
Hernalser Hauptstr.204/14 A-1170 Wien, Österreich,
Phone &:Fax (43 1) 480 54 23 :
e-mail:KAmmer1950@aol.com

We publish

Editorials

Reviews

Original articles

Reports on thermological publications of interest

Announcements from

The American Academy of Thermology,
The Austrian Society of Thermology
The German Society of Thermology
The Polish Society of Thermology
The UK Thermography Association
The European Association of Thermology

Information and abstracts

from conferences and symposia

Manuscripts should follow the recommendations of the International Committee of Medical Journal editors (ICMJE) (1) and should be organized as follows: Introduction, methods, results, discussion, acknowledgements, references. A short abstract in English and, if possible, German (translation will be offered) should head the manuscript. Following the abstract, up to 5 key-words should characterize the paper.

Tables, Figures and Legends for illustrations should appear each on an extra sheet of paper.

Submission on computer discs with name of the used system is encouraged. A print of the disc content should be enclosed.

References should be numbered consecutively in the order in which they are first mentioned in the text. Identify references in text, tables, and legends by Arabic numerals in parentheses. Use the style of the examples below which are

based on the formats used by the US National Library of Medicine in Index Medicus (complete list of examples on (1)).

Standard journal article (List the first six authors followed by "et al" if the number exceeds 6).

Luther B, Kreyer I, Dobi I. Die Anus-praeter-Thermographie als Methode zur Früherkennung vaskulärer Komplikationen nach Dünndarmtransplantation. ThermoMed 1990; 6: 115-7.

Chapter in a book

Gautherie M, Haehnel P, Walter JM, Keith L. Long-Term assessment of Breast Cancer Risk by Liquid Crystal Thermal Imaging. In: Gautherie M, Albert E, editors. Biomedical Thermology. New York Alan R.Liss Publ; 1982. p. 279-301.

Before publication proof prints will be mailed to the main author for corrections. Each author will receive 20 free copies of the reprint.

The journal "Thermology international" (formerly "European Journal of Thermology") is published four times/year. Annual Subscription rate is 38.- €, a single copy costs 12.- € plus mailing costs (4.50 €/copy; outside Austria).

The journal is supplied free of charge to members of the American Academy of Thermology, the Austrian Society of Thermology and also to members of the German Society of Thermology.

References:

- (1) International Committee of Medical Journal Editors. Uniform requirements for manuscripts submitted to biomedical journals. Can. Med Assoc J 1997;156;270-7.
- (2) International Committee of Medical Journal Editors. Additional statements from the International Committee of Medical Journal Editors. Can. Med Assoc J 1997;156; 571-4.

Uhlen Verlag Wien,
Ingeborg Machyl, Fachzeitschriftenverlag

Gusenleithnergasse 28a/1, A-1140 Wien

Thermology international

ISSN-1560-604X

Internet: <http://www.uhlen.at/thermology-international>

European Congress of Thermology 1974-2006: A Historical Review

K. Ammer

Institut für Physikalische Medizin und Rehabilitation, Hanuschkrankenhaus, Vienna, Austria

SUMMARY

The aim of this paper is to give a historical survey on the European Congress of Thermology, which was organized for the very first time in Amsterdam in 1974 and occurred then in a cycle of 4 years until 1994. The interval between congresses was changed to 3 years after the 6th Congress in Bath 1994 and in this year 2006 the 10th congress takes place in Zakopane.

Methods: The presentations schedules of all the conferences, the lists of delegates, the books of abstracts, conference proceedings and photographs of congress participants were reviewed. Descriptive statistics were performed with respect to the origin of participants, number of participants and presentations per conference and topics of presentations.

Results: In total 965 presentations have been given at the first 10 European Congresses of Thermology. The congresses in Brescia in 2000 and this year Zakopane in had the smallest attendance, but the conferences in 1974, 1978, 1982 and 1986 attracted in each meeting 250 to 400 participants. The conference delegates came from 30 different countries and 5 continents (Europe, North- and South-America, Asia and Australia). A wide range of topics was discussed including thermal physiology, thermal physics, methods of temperature measurement, clinical application of thermal imaging for diagnosis and as an outcome measure in breast disease, urology, neurology, rheumatology, pediatrics, dermatology, angiology and dentistry. Thermotherapy, hyperthermia treatment and use of microwaves as a diagnostic tool were other issues. Prof Francis Ring is the only one who has attended all 10 conferences.

Conclusion: Similar as the scientific literature on thermology, the history of the European Congress of Thermology reflects the peaks and troughs of this discipline.

Key words: European Association of Thermology, Conference, History, Thermography

EUROPÄISCHER THERMOLOGIE-KONGRESS 1974-2006- EIN HISTORISCHER RÜCKBLICK

Das Ziel dieser Arbeit ist der historische Überblick über die Europäischen Thermologiekongresse, deren Erster im 1974 in Amsterdam veranstaltet worden war und der bis zum Jahr 1994 in einem vierjährigen Zyklus wiederkehrte. Das Zeitintervall wurde nach dem 6. Kongress in Bath 1994 auf 3 Jahre reduziert und heuer im Jahr 2006 findet der 10. Kongress in Zakopane statt.

Methode: Die zeitlichen Abläufe der Vorträge aller Konferenzen, Teilnehmerlisten, Abstraktbücher, Kongressbände und Fotographien von Kongressteilnehmern wurden durchgesehen. Die Nationalität und Zahl der Teilnehmer, die Zahl der Kongressbeiträge und die Zordnung von Beiträgen zu wissenschaftlichen Themen wurde deskriptiv statistisch erfasst.

Ergebnisse: Insgesamt wurden 965 wissenschaftliche Beiträge bei den 10 Europäischen Thermologie-Kongressen mitgeteilt.

Der Kongresse in Brescia im Jahre 2000 und der heurige Kongress zeigten die geringsten Beiträge, hingegen zogen die Kongresse 1974, 1978, 1982 und 1986 jeweils 250 bis 400 Besucher an. Die Kongressteilnehmer kamen aus 30 verschiedenen Ländern und 5 Kontinenten (Europa, Nord- und Südamerika, Asien und Australien). Zahlreiche Themen wie Thermophysiologie, Thermophysik, Methoden der Temperaturmessung, klinische Anwendung der Thermographie zur Diagnose oder als Ergebnisparameter bei Erkrankungen der weiblichen Brust, in der Urologie, Neurologie, Rheumatologie, Kinderheilkunde, Dermatologie, Angiologie und Zahnheilkunde wurden behandelt. Die Wärmetherapie, insbesondere die therapeutische Hyperthermie und der diagnostische Einsatz von Mikrowellen waren weitere Themen. Nur Prof Francis Ring scheint an allen 10 Kongressen teilgenommen zu haben.

Schlussfolgerung: Ähnlich wie die wissenschaftliche Literatur zur Thermologie, zeigt auch die Geschichte der Europäischen Thermologie-Kongresse das Auf und Nieder dieser Disziplin.

Schlüsselwörter: Europäische Assoziation für Thermologie, Kongress, Geschichte, Thermographie

Thermology international 2006, 16; 85-95

Introduction

The European Congress of Thermology comes of age in the celebration this year the 10th Conference, organised by the European Association of Thermology since foundation. This is a perfect opportunity to look back in time and to show how thermology, the science of heat, developed throughout Europe.

After the first medical publication on thermography by Lawson 1956 [1], users of this new imaging technique in USA and Japan became organised and founded National

Thermographic Societies in 1969 [2]. Although a number of activities occurred in Europe since 1960, including Lloyd-Williams publication in Lancet 1961 and a number of monographies published by Karger, the European Association of Thermography was founded as late as 1972. However, the German Society of Regulation-Thermography used skin temperature measurements as a diagnostic tool since its foundation in 1954 and is the oldest known thermological society in medicine [3].

Figure 1
Number of papers in each of 10 European conferences on Thermology

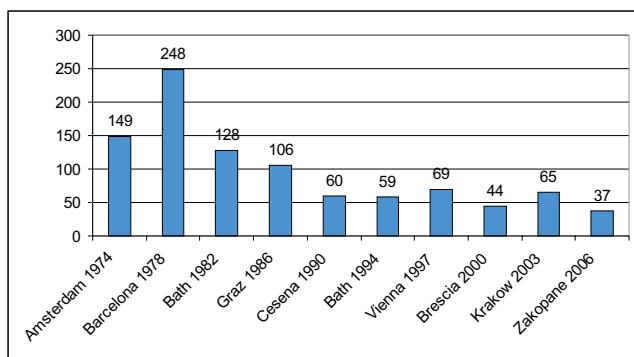
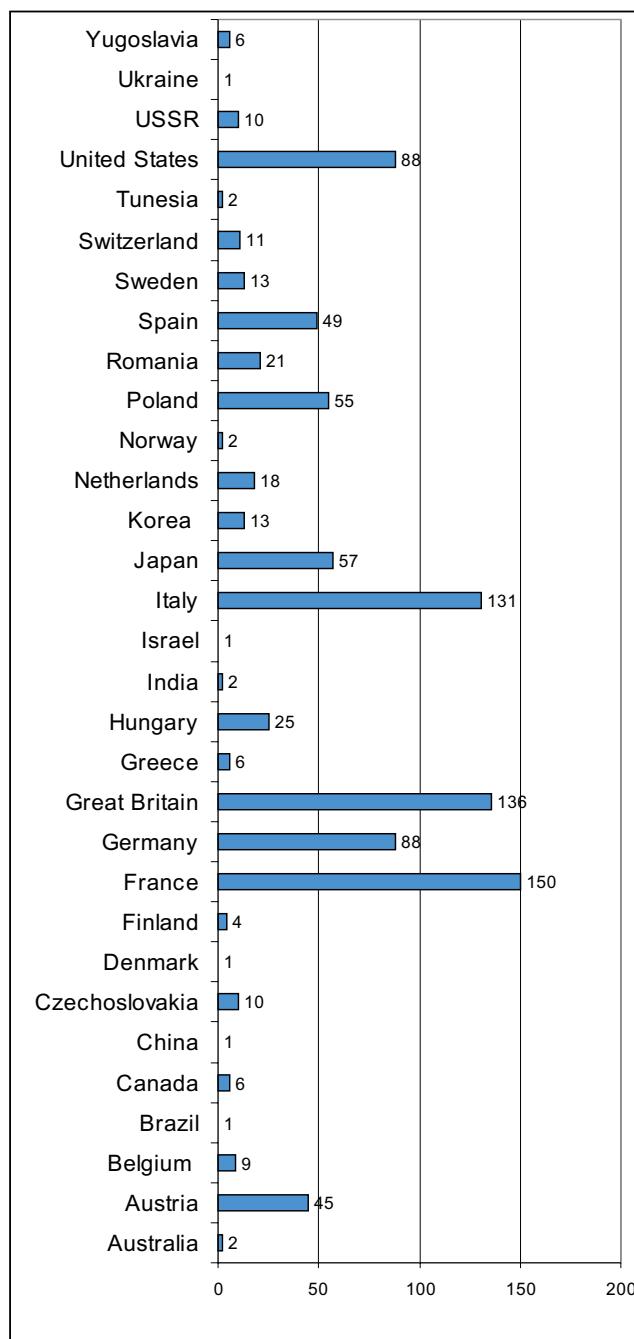
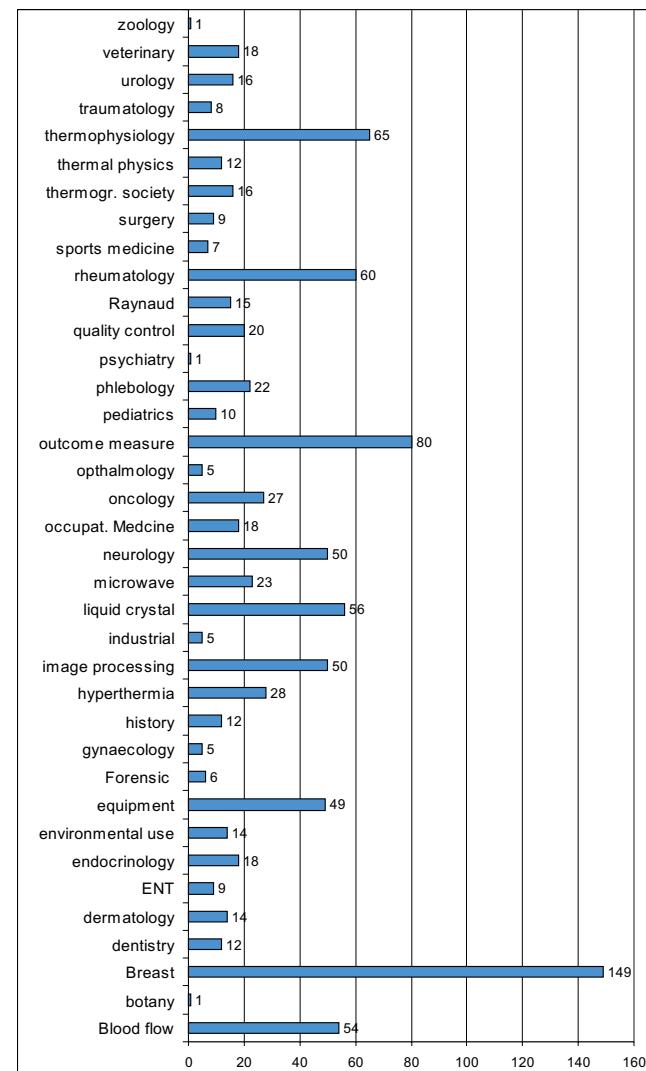



Figure 2
Origin of papers presented at 10 European conferences of thermology

Method

All available printed information from the 10 European Thermology Conferences were reviewed including presentations schedules, lists of delegates, books of abstracts, conference proceedings and photographs of congress participants. Abstracts were allocated to one topic only, in ambiguous cases the theme of the session, in which the paper was presented, caused the final assignment to a topic.


Descriptive statistics have been performed with respect to the origin of participants, number of participants and presentations per conference and topics of presentations.

Results

General results

Abstract collections of all 10 conferences were available. In addition, the proceedings books of the 1st, 3rd and 6th European congress, and full length versions of papers presented at the 7th and 8th congress were accessible. A list of pre-registered delegates to the Amsterdam congress and of participants of the 7th European congress in Vienna were found in archived papers of the European Association of Thermology.

Figure 3
Topics of cumulated papers of 10 European conferences

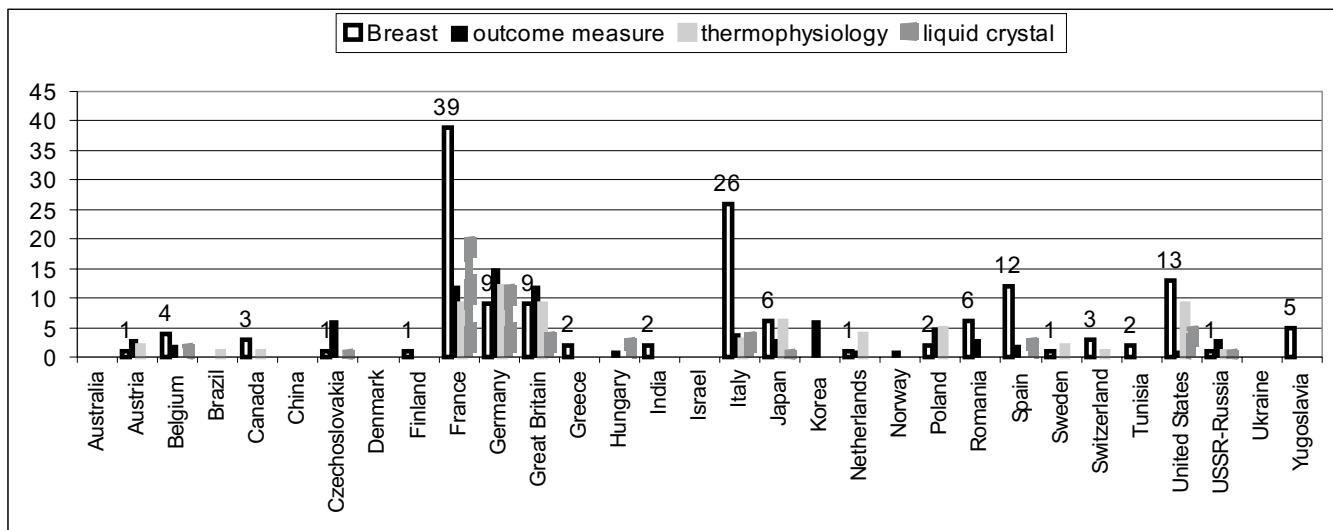


Figure 4
National contributions to the four predominant topics at European Thermology Conferences

In total 965 presentations were given at the first 10 European Congresses of Thermology. Figure 1 shows the numbers of contributions to each conference with highest numbers in the seventies and eighties of the last century.

Figure 2 cumulates the origin of papers in all 10 conferences. The most active nations in presenting data from research in the field of thermology at European conferences have been France (150 papers), United Kingdom (136 papers), Italy (131 papers), Germany (88 papers), United States (88 papers) Japan (57 papers), Poland (55 papers), Spain (49 papers) and Austria (45 papers). However, within the last 10 years conferences presentations from France and also from Italy have become rare.

Over the years, thermography in breast disease was identified as the topic of most dedicated papers (149 papers), followed by thermal imaging as an outcome measure (80 papers), thermophysiology (65 papers), rheumatology (60 papers), liquid crystals (56 papers), blood flow (54 papers), image processing (50 papers), neurology (50 papers) and equipment (49 papers).

Figure 4 shows the origin of authors of the 4 predominant topics of the conferences. Approximately half of the presentations on breast disease has authors from either France or Italy.

Prof Francis Ring, who was, and still is an active board member of the European Association of Thermology since its foundation, appears to be the only person who has attended all 10 conferences.

Amsterdam 1974

The 1st European Congress of Thermography in Amsterdam at the international congress centre RAI had 243 pre-registered participants from 23 countries. France (63), the Netherlands (40), Germany (31), Great Britain (25) and Italy (18) has sent the highest number of delegates (number of participants in brackets). But participants from countries outside of Europe such as USA (18), Canada (3), Japan (2) and South Africa (1) also attended this conference. The book of abstracts (figure 5) contains the summaries of 147

papers. The proceedings, edited by Aarts and Ring for Karger Publishers [4], selected 30 presentations as full length papers. Topics, most discussed in the Amsterdam Congress were thermographic applications for breast disease (28 papers), thermophysiology (13 papers), investigations of blood flow (11 papers), use of thermography as an outcome measure (9 papers) and equipment for thermal imaging (8), especially characteristics and applications of liquid crystals (26 papers).

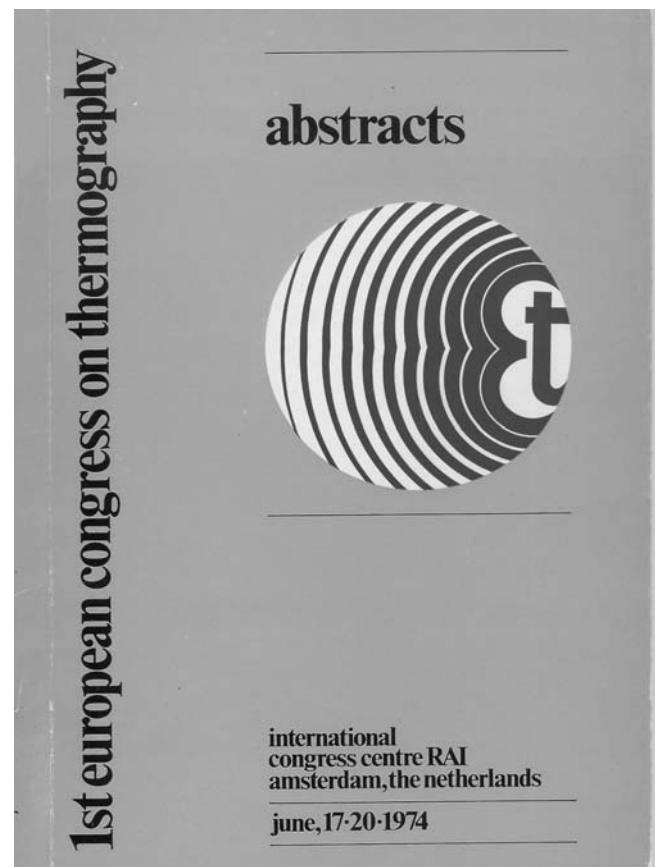


Figure 5
Book of Abstracts of the 1st European Congress of Thermography in Amsterdam 1974



Figure 6
Book of Abstracts of the 2nd European Congress of Thermography in Barcelona 1978

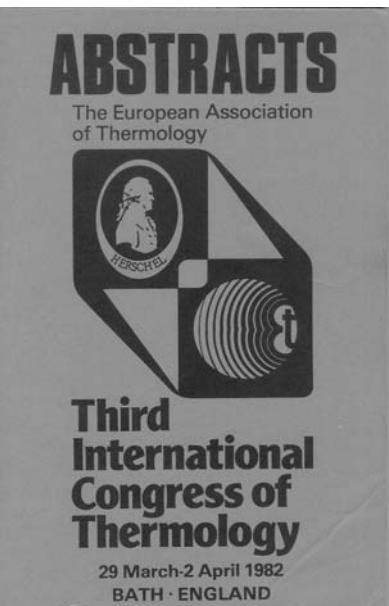


Figure 7
Book of Abstracts of the 3rd European Congress of Thermology in Bath 1982

Figure 8
Book of Abstracts of the 4th European Congress of Thermology in Graz 1986

Barcelona 1978

The 2nd Congress of the European Thermographic Association in Barcelona 1978 was the biggest conference of all the 10 European congresses. Despite possible confusion of the abbreviation of the European Thermographic Association (ETA) with the Basque separatistic terror group, this scientific event attracted 248 papers presented in 33 sessions (figure 6). At the time of the Congress in Barcelona, the Executive Committee of the ETA was built by the president Dr. N Aarts (Netherlands), two vice-presidents Prof G Pistolesi (Italy) and Dr Francis Ring (UK), general secretary Dr M. Gautherie (France), treasurer Dr. C. Hessler (Switzerland) and 2 other board members Prof J. Spitalier (France) and Dr. M. Johne (Germany). 9 sessions of the conference were dedicated to breast thermography and French was the predominant language of these presentations. Liquid crystals were discussed in 20 papers, rheumatology and thermography as an outcome measure had each 14 presentations. 11 abstracts were dedicated to blood flow investigations and 11 other to oncology. The topics image processing, phlebology and urology had each 10 papers.

Bath 1982

A year after the Barcelona Congress, the European Thermographic Association changed its name to European Association of Thermology (EAT) to reflect the wider interest of the members. It was also decided, to organize the Third International (European) Congress of Thermology in Bath, United Kingdom, in April 1982. The book of abstracts (Figure 7) shows 128 abstracts allocated to 12 sessions. The Congress was opened by the Duke of Kent and Dr Lloyd-Williams, one of the pioneers of thermal imaging in the United Kingdom, was the Conference President. Authors from 20 countries discussed their findings. The majority of papers originated from United Kingdom, France, Germany, Italy, the United States and Japan. The

proceedings [5] is a volume of 706 pages and still a standard reference in the field of thermology.

Thermography in breast disease was the topic with the highest number of presentations (20 papers), followed by thermophysiology (14 papers), rheumatology (12 papers), blood flow and hyperthermia (11 papers each) and equipment (10 papers).

In the late seventies of the 20th century, thermal cameras and the methods of evaluating thermal images had started to improve. False coloured thermograms, spot temperature measurements, temperature profiles ("line-scans"), isotherms and also area measurements became possible with camera systems, available at that time. Microcomputers linked to the scanner made image capture, image processing and image storage easier. Quantitative thermography, in clinical demand from the Thermal Imaging Group at the Royal Hospital for Rheumatic Diseases in Bath since the early seventies culminated in the creation of a Thermal Index in 1974 [6], with applications reported in 1982. Consequently, the proceedings has published a number of papers on computer assisted processing of thermal images [7,8,9], quantification [10] and quality control in infrared thermography [11]. Although absolute temperature measurements are impossible to obtain with liquid crystals, this technique of temperature assessment was topic of 9 presentations of the Bath Conference 1982.

Graz 1986

In 1986, Francis Ring served as president of the EAT together with Prof Houdas from Lille, France as general secretary, and C. Sayegh, Geneva, Switzerland as treasurer. The Austrian radiologist Hans Waltner, who lived and worked in the Styrian capital Graz, was vice-president of the EAT [12]. Dr. Waltner was also member of the board of the German Society of Thermology at that time, and two years later became founding member of the Austrian Society of Thermology. He was also the general secretary of

Figure 9
Lippizaner horses in Piber

Figure 10
Book of Abstracts of 5th European Congress of Thermology in Cesena 1990 and Palazzo del Ridotto, venue of the congress

the fourth international Congress of the European Association of Thermology, held in September 1986 in Waltner's hometown Graz in Austria.

It was, in fact, an international Congress on behalf of the European Association of Thermology in cooperation with 3 national member-societies of the EAT namely the Anglo-Dutch Thermography Society, Club Francais de Thermologie Medicale and the German Society of Thermology and supported by the American Academy of Thermology, the Japanese Society of Bio-Medical Thermography and the International Society for Bioengineering and the Skin.

The Congress President was the German dermatologist Prof. G. Stüttgen, who had also an interest in regulation-thermography. He was the driving force for a close collaboration of both German societies which finally lead to the agreement to use the journal ThermoMed from 1988 on as the official publication organ of both German Societies i.e. Thermography and Thermology [13]. This cooperation lasted until 1997, when the German Society of Thermology left ThermoMed and changed over to the European Journal of Thermology

The 4th European Congress had an impressive honorary committee including the Austrian Health Minister, the Governor of Styria, the Major of Graz, the Dean of University of Graz, the President of the Chamber of Physicians of Styria and the President of the American Academy of Thermology M. Abernathy and also the President of the Japanese Society of Biomedical Thermology K. Atsumi.

The book of abstracts (figure 8) shows 106 papers from 21 countries with the highest number of papers from Germany (32 papers). For the first time in European thermology congresses, breast thermography was not the predominant topic. Thermography as an outcome measure had the highest number of papers dedicated, equipment, breast thermography, rheumatology, thermophysiology and microwave detection were the next in rank. Liquid

crystals was the main theme of two presentations only. Thermography in animals became a new topic and Prof. Ram Purohit, an experienced horse thermographer, was delighted by a short trip to the village of Piber, where the famous white Lipizzaner horses are bred. Thermograms were recorded with a British portable IR camera there.

At the Graz conference, the idea of founding an International College of Thermology (ICT) was conceived [14] by the three presidents Abernathy, Atsumi and Ring, who all attended the Graz Congress. The foundation was formalized on 25th of April 1987 in Ghent, and M. Abernathy was elected as the first president [15]. The ICT was intended as a loose liaison of the three continental thermology societies in America, Asia and Europe to facilitate communication between thermologists and thermographic societies. Another target of the ICT was the organisation of regular international thermology conferences, which rotates in a 3 year cycle from Americas to Europe and then to Asia. The first ICT -Congress was organised in 1989 in Georgetown, Washington DC [16], where the ICT president in 1988, Prof Atsumi from Japan, passed the ICT- presidentship to the EAT president Thibault de Boesinghe.

Cesena 1990

The 5th European Congress of Thermology was a combined event with the 6th Annual Italian Congress of Thermology held in Cesena, Italy. The programme was prepared by the President of the Italian Thermology Society Dr. Rocchi, working at the Centre for Diagnosis and Treatments of Tumour, Ospedale M. Bufalini in Cesena, and the general secretary of the EAT Dr. R. P. Clark, UK. The book of abstracts (figure 10) contained 60 papers, 45 of these in Italian. Unfortunately, most papers presented in the Palazzo del Ridotto were in Italian. Thermographers from United States and Japan presented only 3 papers each, United Kingdom contributed 4 papers and France 8 papers.

Thermologie Österreich 4/4 (1994)

Final Programme - The Thermal Image

Meeting of the Royal Photographic Society Imaging Science & Technology Group
11th-12th October 1994 at The Assembly Rooms, Bath, U.K.

TUESDAY 11th October 1994

09.30-10.30 Registration and coffee

10.30-12.45 INFRARED IMAGING Part 1

Chairman: R.P.Clark (UK), M.Austin (USA)

10.30-10.35 Introduction E.F.Ring, Bath

10.35-10.45 History of thermography G.Culshaw, Buxton

11.05-11.30 Developments in IR detection in the U.K. D.Dibble, Leighlin Barrard

11.35-11.45 Opto-mechanical systems for IR thermography B.Harper, Malvern

12.05-12.20 Uncooled detector Systems M.Kots, Orange, CA

12.20-12.45 Staring array systems for thermal imaging

LUNCH

14.15-15.00 INFRARED IMAGING Part 2

Chairman: M.Austin (USA)

14.15-14.30 A speedy all purpose system for dynamic IR A.G.Makarov, P.V.Zakharenko, Moscow

14.30-14.45 Dynamic IR thermoscaning system A.M.Fisher, M.L.Khatri et al, Moscow

14.45-15.00 Discussion

15.30-17.00 MICROWAVE DETECTION

Chairman: D.Land (UK), M.Calica Goff (USA)

15.30-16.00 Measurements of the effect of dielectric modification circulating realistic tissue layering, on the behavior of microwave thermography P.C.Harries, D.V.Land, Glasgow

16.00-16.20 Finite element analysis of microwave thermographic images M.Kots, D.V.Land et al, Glasgow

16.25-16.40 Recent investigations of combined thermal and microwave imaging of body temperature for the interpretation of microwave images N.Polinsky, A.W.Prince, Bristol

16.40-17.00 Numerical modelling of non-invasive UHF sensor based cancer detection

154

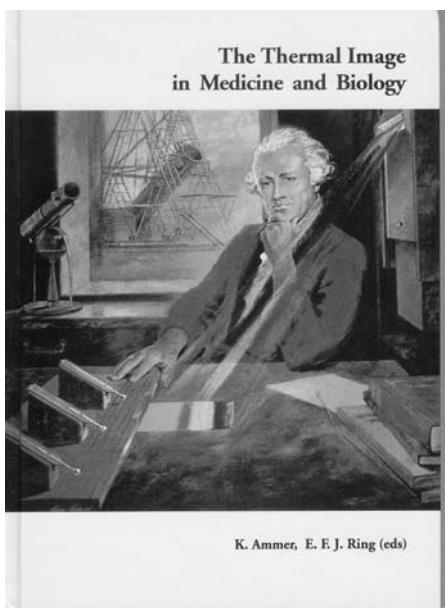


Figure 9

Programme of 5th European Congress of Thermology, published in Thermologie Österreich, in Bath 1994, at the Assembly Room and Proceedings Book of the Conference

Breast thermography was again the major topic (17 papers), followed by hyperthermia (9 papers), outcome measure (5 papers), image processing and equipment (4 papers each).

In the general assembly of the EAT Dr. RP Clark was elected as president, Dr L. Rocchi as vice-president, and Dr. K.Ammer took the combined function treasurer and general secretary. During this assembly personal membership in the EAT was also suspended, and membership fees for National Society Members were largely reduced. Finally, the former EAT president Dr. Thibault de Boesinghe offered to host the 2nd ICT-congress in Ghent in 1992.

Extra Event Gent 1992

The 2nd ICT-Congress was organised by the EAT, but was not a congress in the series of European conferences. The venue of the congress was an old monastery, named Het Pand, in Ghent. 67 papers were allocated to 11 sections related to thermal physiology (7 papers), dermatology and pediatrics (5 papers), locomotor & neuromuscular thermography (9 + 5 papers), oncology and Cancer research (4+4 papers), poster discussion (7 papers), microwave (6 papers), hyperthermia (8 papers), clinical applications (8 papers) and international forum (4 papers). Authors of presentations originated from Austria (1 paper), Belgium (8 papers), Czechoslovakia (1), Croatia (1 paper), France (5 papers), Germany (9 papers), Hong Kong (1 paper), Hungary (7 papers), Italy (7 papers), Japan (6 papers), Poland (1 paper), United Kingdom (10 papers) and United States (8 papers). The abstracts have been published as supplement of the journal Thermologie Österreich [17].

Bath 1994

In 1994 the European Congress went back to Bath and the conference was organised in cooperation with the Royal Photographic Society, in which Dr Clark and Francis Ring were both active. The venue of the congress was the The

Figure 10
The Oldtime Jazzband "Red Wings" with Dr.Rusch on cornet

Assembly Rooms and the congress abstracts were published in Thermologie Österreich (figure 9). The programme had to main parts: The Thermal Image [18] was organised by the Royal Photographic Society Imaging Science & Technology Group and was dedicated to Infrared Imaging (10 papers), Image Processing (3 papers), Thermal Image Applications (4 papers) and Microwave Detection (4 papers). The EAT was responsible for the other main part, named Recent Advances in Medical Thermography. 38 presentations were allocated to 5 topics. Thermal Physiology and the Skin had 11 papers, Veterinary Thermography had 6 contributions, 3 papers have been assigned to Neuromuscular Thermography and 5 presentations to Vascular Applications. The remaining 14 contributions were presented in a three part session on Medical Applications of Thermal imaging. A keynote lecture entitled Thermal images from space closed the conference, which has also included a Meeting of the Standardisation Committee with guests from Japan and USA.

Figure 11
Ray Clark, Richard Harding and Mervyn Goff in front of the "Black-Plaque Column" in Vienna, recorded during the 7. European Congress of Medical Thermology

For the first time for many years, the founding President of the European Thermographic Association, the Dutch radiologist Dr. N. Aarts participated in an European Congress of Thermology and chaired a session on thermal physiology [20]. Highlight of the social programme was a river Boat Shuffle with the German Oldtime Jazzband "Red Wings" from Bad Nauheim on an historic covered long-boat. Dr. Dieter Rusch, at that time physicist at the Rheumatic Hospital in Bad Nauheim and one of the pioneers of quantitative infrared thermography in Germany, played the cornet (figure 10).

The proceedings [figure 9] contains two thirds of the presentations of the 6th European Congress of Thermology [21] This book, now out of print, became a major reference source for thermal imaging in medicine and biology, similar as the proceedings of the Bath Conference in 1982.

In the EAT, Prof R. Clark and Dr Ammer continued in their positions of president and general secretary, respectively. Dr. Dieter Rusch followed L.Rocchi as newly elected vicepresident.

Vienna 1997

It might have happened by chance, that the European Congress went twice in its history from Bath to Austria by the next occasion. This occurred in 1986 and in 1997, when the

Figure 12
Kunihiiko Mabuchi and Brian Harrison at the SAS Hotel in 1997

Figure 13
Srinivasa Govindan and Michael Engel's Wife enjoying Austrian folk music at a typical Viennese Restaurant ("Heuriger")

period between European conferences had already been reduced to three years in order to fit in the intended cycle of one international thermology meeting each year. This was suggested by the ICT, which had already installed a 3 years cycle for the ICT-conferences (1stICT- Congress George town 1989, 2nd ICT-congress Ghent 1992). To change the period between European congresses from 4 to 3 years, was agreed at an Symposium in Tokyo in 1993 [22]. Officers of the EAT (Dr.Clark, Dr.Ammer, Dr. Ring, M.Goff) and the president and delegates of the American Academy of Thermology (Dr.Pavot, Prof.Anbar) participated in this meeting partly to support the preparation work for the third ICT-congress, held in Matsumoto Japan 1995 [23].

The venue of the 7th European Thermology Congress was the SAS Palais Hotel, originally one of the palaces, built in the sixties of the 19th century by rich merchants on the edge of the famous Ring Street, newly designed at that time to replace the empty space in front of the city walls of old Vienna.. The SAS Hotel became the traditional venue of the Thermological Symposia of the Austrian Society of Thermology and the 7th EAT-Congress was combined with 10th Austrian Symposium and the Annual Meeting of the German Society of Thermology [24]. The honorary committee of the congress included the Austrian Minister for Science and Research and the Governor and Mayor of

Figure 14
Palazzo Arzago, venue of the 8th European congress of thermology

Vienna. Financial support was received from the City of Vienna, the Ludwig Boltzmann Research Institute for Physical Diagnostics and Pharmaceutical Companies.

Although the number of congress-participants was only 100, they originated from 14 nations including Japan, Korea and the United States, but thermographers from France were absent. Conference participants are shown in figures 11-13, some of them enjoyed at least the social programme (figure 13).

The scientific programme had 69 papers, main topics have been neurology (10 papers), rheumatology (9 papers), followed by equipment (6 papers), phlebology (6 papers) and breast thermography, blood flow and outcome measure (4 papers each). An interesting and entertaining paper was presented by an academic trumpet teacher, who used thermal imaging as an outcome measure for trumpet playing skills [26].

A number of presentations (27-48) at the 7th European congress have been published as full length papers in the European Journal of Thermology, to which the name of Thermologie Österreich was changed after Austria has become a full member in the European Community, and the German Society of Thermology and the Thermology Society of Great Britain has accepted this journal as their official publication organ [49].

In 1997, there was no General Assembly associated with the 7th European Congress. The next Assembly of the EAT took place in Bath in 1998 after another Symposium of the Royal Photographic Society on Medical & Forensic Imaging [50]. Prof Ray Clark passed the the presidency to Prof Francis Ring, the vice-president Dr. Rusch and the general secretary Dr Ammer continued in their function. It

was also agreed, to reduce the period of the officers and the committee of the EAT from 4 to 3 years from 1998 on for improving the coordination between the cycle of the European Thermology Congress and the function period of the EAT. At this meeting two new member societies, the Polish Thermology Society and the revived, and re-established Italian Association of Thermology (AIT) joined the EAT. The 8th European Congress of Thermology was scheduled for 2000.

Brescia 2000

Dr. G. Dalla Volta, president of the AIT confirmed after the 12th Austrian Thermological Symposium at an EAT business meeting in Vienna 1999 his offer to organize the 8th European Congress in Italy in the region of Lake Garda [51].

Originally, the combined conferences, 8th European Congress and 3rd Congress of the Italian Association of Thermology, should have taken place in Desenzano. Due to unexpected cancellation of the original venue at short notice, the conferences had to move to another place. The Palazzo Arzago in Carzago di Calvagese della Riviera, a 15th-century palace with an internal courtyard and chapel nestled in the beautiful hills in the southwest of Lake Garda, became the venue of the first European Thermology Congress in the new 21st century..

44 papers were presented by authors from 13 countries including Brazil, Japan, Korea and United States [52]. Thermal imaging as an outcome measure (6 papers), rheumatology (6 papers), blood flow studies (5 papers), neurology (5 papers) and thermophysiology (4 papers) were the topics of highest interest. Some of the presentations were published as full length papers in Thermology international [53-59]

Extra Event Vienna 2001

Immediately after the conference at the Lake Garda, the preparation for the 5th ICT-Conference had to begin. In 2001 the presidency of the ICD came back to Europe to the EAT president Prof. Francis Ring. The Austrian Society of Thermology offered to organize the 5th ICD-Congress on behalf of the EAT [60]. The venue of the conference was again the SAS Palais Hotel in Vienna. The 5th ICT-Congress was combined with the 14th Thermological Symposium of the Austrian Society of Thermology and the Annual Meeting of the German Society of Thermology.

New people participated in this conference. Prof. B Wiecek, who hosted the QIRT -Conference 1998 in Lodz [62], gave a talk on the basis and application of the thermal wave method in thermography. Dr. Paul Campell, a physicist at the University of Dundee, presented his experience with thermal imaging for monitoring heat spread in tissue during energised surgical procedures. Prof James Mercer, at that time chairman of the thermophysiology section in the International Physiology Society, came from Tromsö, Norway, to talk about temperature changes in the hands and feet of young and elderly subjects following local cooling. Finally, Dr. M. Brioschi, president of the Brazilian Society of Thermology, presented 6 papers, which confirmed the

Figure 15
The Baroque Bendiktine Abbey Melk, in the Wachau Danube Valley

high interest of the medical community in Brazil for applications of thermal imaging.

The scientific programme consisted of 50 papers and a round table discussion on standards in medical thermal imaging, with experts from United Kingdom, Austria, Germany, United States, Japan and Korea at the discussion desk. Authors came from Austria (9 papers), Brazil (6 papers), Germany (4 papers), Greece (1 paper), Hungary (1 paper), Israel (1 paper), Italy (3 papers), Japan (1 paper), Korea (6 papers), Norway (1 paper), Poland (5 papers), Slovakia (1 paper), Spain (1 paper), United Kingdom (5 papers) and United States (5 papers). Participants in the audience came from as far as Australia and China.

The conference closed with a visit to Melk Abbey, in the Wachau Danube Valley (Figure 15) followed by dinner in a local restaurant in the Danube valley with typical local food and wine from the region.

The General Assembly of the EAT took place in the evening preceding the 5th ICT-congress [63]. Prof Ring and Dr. Ammer continued in their function, Prof Jung, president of very active Polish Society was elected as the new vice-president. The General Assembly agreed also in slight change of membership fees in the EAT. The next 9th European Congress of Thermology was scheduled for 2003, probably in Poland.

Krakow 2003

The 9th European Conferences combined with the 6th National Congress of the Polish Society of Thermology and 16th Thermological Symposium of the Austrian Society of Thermology occurred at the same time when US President G. Bush visited Krakow. But neither the American President nor the participants of the Thermology Conference were bothered by this collision! The venue of the conference, originally a military club, built in the early 20th century, is now used as conference center, exhibition area and concert hall, which provided plenty of space for meeting together (figure 15), lectures and poster exhibition.

The scientific programme announced 49 oral presentations and 16 posters. The majority of authors originated from Poland (27 papers), followed by United Kingdom (12 papers) Austria (8 papers) and the United States (6 papers). For the first time, presentations from Germany and Japan

Figure 16
Come together at the 9th European Congress in Krakow, Prof Ring and Dr. J. Zuber in front

Figure 17
Courtyard of the Niepolomice Castle, used to be a refuge for the royal court during the time of plagues

were missing at a European Thermology Congress. Two delegates came from the Czech Republic, presenting papers on breast thermography and application of thermal imaging for the assessment of tendon injuries in horses and temporomandibular joint problems in humans. A very active group from Korea contributed 5 papers on various aspects of thermal imaging for spinal disorders.

The enjoyable social programme included a trip to the Niepolomice Castle (figure 17), situated in the vicinity of Krakow, and a sightseeing tour through Krakow including the Wawel, the Cathedral and the Cathedral Museum.

In the business meeting of the EAT, the uncertain legal status of the EAT was discussed. Agreement was found for the proposal of reconstruction the EAT, based on new legal registration as an international society in Austria as a clear solution for this legal problem.

The reconstruction of the EAT was finalized at a special meeting of the founding members in Vienna on October 30, 2003 [65]. In this meeting all participants agreed in the proposed phrasing of the society rules. In the election of officers of the reconstructed EAT Prof Jung became the new president, Prof. Ring was elected as vice-president and Prof Ammer continued as general secretary and treasurer. The Austrian authorities declared that the European Asso-

ciation of Thermology was formally registered as a society on 07.01.2004.

Zakopane 2006

During the business meeting of the EAT-officers at the 8th Congress of the Polish Association of Thermology [66] in March 2005, Prof Jung offered to organize again the coming European conference of Thermology in Poland. The venue of this meeting is a new conference hotel in Zakopane in South of Poland, situated in the Tatra Mountains. Nearly all national congresses of the Polish Thermology Society have taken place in the region of Zakopane and all participants in these meetings from outside of Poland enjoyed the environment, the typical restaurants, the Polish hospitality and of course, the scientific presentations on thermology.

The scientific programme of the 10th European Congress of Thermology combined with 9th Annual Congress of the Polish Association of Thermology and the 19th Thermological Symposium of the Austrian Society of Thermology has scheduled 37 papers [69]. Speakers will come from various European countries and the United States.

Discussion

This review of the history of more than 30 years of European conferences of thermology shows clearly the up and downs of this discipline. Nations very active in the early days of thermal imaging such as the French has ceased all activities in the mid of the nineties. A similar history is found in Spain, the Netherlands and more recently for Germany and Japan. However, the interest in thermology revived in some other countries after having experienced a large decrease of activities. This occurred in Italy, where a large society ceased nearly all activities in the beginning of the nineties of the 20th century, but slowly recovers after the reconstruction of the Italian Association of Thermology and despite the fact that recently the Italian Health Ministry objected to recommend thermal imaging as a diagnostic procedure [70].

Thermology in the United Kingdom had also difficult times after the European Thermology Conference in Bath 1994, but now experience increased acceptance, specially in medical physics. The activities of the Medical Imaging Group at the School of Computing, University of Glamorgan have contributed substantially to this development. This increase of interest can be recognised in higher number of presentations at the meetings of the Medical Section of the UK Thermographic Association and the strong engagement of the National Physical Laboratory in infrared based temperature measurements. The British thermologists also attracted some Dutch scientists to present their research results of temperature measuring devices [71].

Hopefully, a similar rise in scientific interest will occur in Japan, Korea and the United States, where the technique of thermal images suffers from unacceptable promotional activities by certain commercial activists. Nevertheless, the updated Bioengineering Handbook, recently published by CRC-Press, has dedicated a extensive section to infrared imaging, which may be a sign for acceptance of thermology at least with bioengineers. However, acceptance and reimbursement for thermal imaging by medical insurance

is not expected to be an immediate consequence from this up to date publication.

References

1. Lawson RN Implications of surface temperatures in the diagnosis of breast cancers. *Can Med Ass J* 1956, 75:309-310
2. Solsona F. Resumen Historico de la Termografia Medica. II-Congresso Europeo de Termografia, Barcelona 11-15 septiembre 1978 ESPANA, Abstracts, pp. 9-12.
3. Berz R. 50 Jahre Deutsche Gesellschaft für Thermographie und Regulationsmedizin e.V. *ThermoMed* 2004; 19/20: 45-55
4. Aarts NHM, Ring EFJ (eds) *Thermography*. Proceedings of the first European Congress of Thermography. Amsterdam 1974, *Bibliotheca Radiologica* No.6, Karger, Basel, 1975
5. Ring EFJ, Phillips B (eds) *Recent Advances in Medical Thermology*. Plenum Press, New York-London, 1984
6. Collins AJ, Ring EFJ, Cosh JA, Bacon PA. Quantitation of Thermography in arthritis using multi-isothermal analysis. *Ann Rheum Dis* 1974, 33: 113-115
7. Newgin M. Computer processing of thermographic images. In: Ring EFJ, Phillips B (eds) *Recent Advances in Medical Thermology*. Plenum Press, New York-London, 1984, p. 195- 204
- 8.) Bösiger P, Scaroni F, Geser M. Microprocessor-assisted Breast Thermography. In: Ring EFJ, Phillips B (eds) *Recent Advances in Medical Thermology*. Plenum Press, New York-London, 1984, p.215-220
9. Tanaka A, Inoue T, Yoshimura T, Horikawan H. Digital Thermography System. In: Ring EFJ, Phillips B (eds) *Recent Advances in Medical Thermology*. Plenum Press, New York- London, 1984, p.221-225
10. Page Thomas DP. Information Theory and Thermographic Quantification. In: Ring EFJ, Phillips B (eds) *Recent Advances in Medical Thermology*. Plenum Press, New York-London, 1984, p.205-210
11. Ring EFJ. quality control in infrared thermography. In: Ring EFJ, Phillips B (eds) *Recent Advances in Medical Thermology*. Plenum Press, New York-London, 1984, p.185-194
12. Thermomedica 86. *Thermology* 1986, 2 (2):67-100.
13. Blank M, David E, Pfeifer H, Rost A, Stütgen G. Editorial. *ThermoMed* 1988. 4: 3
14. Presidential Address. The International College of Thermology, Dr. Leopold Thibault de Beosinghe, President. *Thermology* 1989, 3, 95-96
15. International College Elects Abernathy. *Thermology* 1987: 2(4): 617
16. Podium Presentations from the 18th Annual Meeting of the American Academy of Thermology, Held Jointly with the International College of Thermology- United for Progress" *Thermology* 1989, 3: 137-146
17. International Congress of Thermology, Ghent, Belgium 27-29, 1992. *Thermologie Österreich* 1992, 2 :S5-S43
18. The Thermal Image - Abstracts. *Thermologie Österreich* 1994; 4(4): 159-167
19. Recent Advances in Medical Thermography. *Thermologie Österreich* 1994; 4(4): 168-184
20. Final Programme-Recent Advances in Medical Thermography. *Thermologie Österreich* 1994; 4(4): 156-158
21. Ammer K, Ring EFJ (Eds) *The Thermal Image in Medicine and Biology*. Uhlen Verlag, Wien 1995
22. Mabuchi K, Mizushina S, Harrison B (eds). *Advanced Techniques and Clinical Applications in Biomedical Thermology*. Harwood Academic Publishers, Chur, 1994
23. Proceedings of International Congress of Thermology. *Biomedical Thermology* 1995, 15 (2):63-180
24. 7th European Congress of Medical Thermology. *Thermologie Österreich* 1997, 7(2); 59-64
25. 7th European Congress of Medical Thermography - Abstracts. *Thermologie Österreich* 1997, 7(2); 65-93

26. Bertsch M, Maca T. Visualization of Trumpet Players' Warm Up by Infrared Thermography. *Brass Bulletin*, 2001;114:26-33

27. Anbar M., Grend MW., Marino MT, Milesi L., Zamani K. Fast Dynamic Area Telethermometry (DAT) of the Human Forearm With A Ga/As Quantum Well Infrared Focal Plane Array Camera. *Eur J Thermol* 1997, 7(3):105-118.

28. Yeo SA, Shimkus M.; Rossini D.: Thermoregulatory Adjustment During Pregnancy Protect Fetus From Exposure of Exercise-Induced Hyperthermia. *Eur J Thermol* 1997; 7(3):119-126.

29. Jung A, Zuber J, Kalicki B, Sacha P, Lukasiewicz J, Klosowicz S. Thermographic Analysis of the Tuberculin Reactions of Children. *Eur J Thermol* 1997; 7 (3):127-131,

30. Howell K, Kennedy LF, Smith RE, Black CM. Temperature of the toes in Raynaud's phenomenon measured using infra-red thermography. *Eur J Thermol* 1997, 7(3):132-137.

31. Pascoe DD., Herrick RT, Purohit RC. Thermographic Evaluation of the Response Time of Normal and Carpal Tunnel Syndrome Subjects after a Cold Water Stress Test. *Eur J Thermol* 1997, 7(3) 138-141

32. Ciatti S, Turchi P., Sarteschi LM, Fanfani A, Fanfani S, Frosini F. Thermography in the evaluation of Peyronie's disease:a new "hot spot" *Eur J Thermol* 1997; 7(3):142-145.

33. Anbar M: Mechanism of the Association Between Local Hyperthermia and Local Pain in Joint Disorders. *Eur J Thermol* 1997; 7(4) :173-188,

34. Pascoe DD, Slaten BL, Purohit RC. Thermographic Evaluation of Skin Temperature of Chest Region After Work in a Heat Chamber and Removal of a Protective Barrier Outfit. *Eur J Thermol* 1997;7(4):189-191.

35. Jung A, Zuber J, Kalicki B, Sacha P, Lukasiewicz J, Klosowicz S, Rutka J. Thermovision Monitoring of Changes in Kidney Parenchyma After ESWL in Children With Nephrolithiasis. *Eur J Thermol* 1997; 7(4) :192-196,

36. Montruccoli GC, Montruccoli Salmi D. Dynamic Angiothermography And X-Ray Mammography For Early Diagnosis Of Breast Cancer. *Eur J Thermol* 1997;7 (4) :196-198.

37. Gillenwater E. jr. Medical Evidence From A Legal Perspective.. *Eur J Thermol* 7/4 :199-204, 1997

38. Sella GE. Forensic Criteria of Acceptability of Thermography. *Eur J Thermol* 1997; 7(4):205-207,

39. Diakides NA. New Developments in Low Cost IR Imaging Systems. *Eur J Thermol* 1997; 7(4) 208-210,

40. Plassmann P, Ring EFJ. An open system for the acquisition and evaluation of medical thermological images. *Eur J Thermol* 1997; 7(4) :211-214.

41. Bernhardt M, Banzer W. Intersubject variability of thermoregulation within two measurements at the shoulder joint. *Eur J Thermol* 1997; 7(4) :215-217,

42. Melnizky P., Schartelmüller T, Ammer K. Intra- und interindividuelle Zuverlässlichkeit von Temperaturwerten aus Infrarotthermogrammen . *Eur J Thermol* 1997;7(4):218-220,

43. Ciatti S, Mauro G, Mannelli P, Frosini F; Fanfani A, Fanfani S. Thermography in the Evaluation of Orofacial Pain in Temporomandibular Disorders *Eur J Thermol* 1998, 8 (1): 13-23

44. Jung A, Zuber J, Kalicki B, Sacha P, Lukasiewicz J, Klosowicz S. Thermal imaging diagnostics in paediatric allergy. *Eur J Thermol* 1998, 8 (2):45-49

45. Ammer K., Engelbert B, Hamerle S, Kern E, Solar S., Kuchar K. Correlation between the WOMAC and temperature in patients with knee pain. *Eur J Thermol* 1998, 8(2): 50-56

46. Mayr H. Thermographische Beobachtungen nach Kniegelenksoperationen. *Eur J Thermol* 1998, 8 (2):57-64

47. Schartelmüller T, Melnizky P, Ammer K. Gesichtsthermographie: Vergleich von Patienten mit Fazialisparese und akutem Herpes zoster ophthalmicus. *Eur J Thermol* 1998, 8 (2):65-68

48. Ammer K., Engelbert B, Hamerle S, Kern E, Solar S., Kuchar K: Thermography of the painful shoulder. *Eur J Thermol* 1998, 8 (3):93-100

49. Ammer K. Editorial. *Eur J Thermol* 1997, 7(3): 104

50. News in Thermology - General Assembly of the EAT. *Eur J Thermol* 1998; 8(3): 124-126

51. News in Thermology - Business meeting of the EAT Committee. *Thermol int* 1999, 9 (3): 118

52. 8th European Congress of Thermology & 3rd Congress of the Italian Association of Thermology, September 8-9, 2000. *Thermol int* 2000, 10(3): 132-159.

53. Jones BF, Ring EFJ, A Searchable Archive of Thermal Imaging for Medicine Papers on CD-ROM. *Thermol int* 2000, 10(4): 201-203

54. Howell KJ, Martini G, Murray KJ, Smith RE, Black CM. Infrared thermography for the assessment of localised scleroderma in children. *Thermol int* 2000, 10(4): 204- 209

55. Kanie R. The clinical application of thermography to osteoarthritis of the hip. *Thermol int* 2000, 11(1):19-24

56. Fujimas I, Nakazawa H, Kawada S. A New thermal Coronary Angiography System. *Thermol int* 2000, 11(1):25-26

57. Jung A, Zuber J, Kalicki B, Perdzynski W, Klosowicz SJ. Thermographic evaluation of selected cases of pathology of the venous system in children. *Thermol int* 2000, 11(2):66-71

58. Ammer K, Engelbert B, Kern E. The Determination of Normal Temperature Values of Finger Joints. *Thermol int* 2002, 12(1):23-33

59. Orlandini G. Thermographic changes after surgery for pain syndromes. *Thermol int* 2002, 12(2): 45-50

60. News in Thermology - 5th International Congress of Thermology 2001 in Vienna. *Thermol int*. 2000, 10(4): 216-217

61. Fifth International Congress of Medical Thermology combined with the 14th Thermological Symposium of the Austrian Society of Thermology and the Annual Meeting of the German Society of Thermology. *Thermol int*.2001; 11(2): 72-103

62. Quantitative InfraRed Thermography 4. QIRT'98, Book of Abstracts.ISBN 83-87202-41-X

63. EAT General Assembly, April 27, 2001, in Vienna, SAS Palais Hotel . *Thermol int*.2001; 11(3): 147-149

64. 9th European Congress of Thermology, Krakow, Poland, May 29 to June 1, 2003: Abstracts. *Thermol int* 2003, 13(2): 63-82

65. Jung A, Ammer K..Report on the Reconstruction Meeting of the "European Association of Thermology". *Thermol int*. 2004, 14(1): 41

66. 8th Congress of the Polish Association of Thermology, Zakopane, March 18-20, 2005. *Thermol int* 15 (2): 71-78

67. Scientific programme of the Combined Conferences 10th European Congress of Medical Thermology, 9th National Congress of the Polish Association of Thermology , 19th Thermological Symposium of the Austrian Society of Thermology. Zakopane / Poland - 15th-17th September 2006. *Thermol int* 2006, 16 (3): 96-113

68. Audit of the Italian Health Ministry on indications for thermal imaging in medicine. *Thermol int*. 2006, 16(2): 70-71

69. Medical Thermography and Thermometry. *Thermol int* 2005, 15 (4): 151-158

Address for correspondence
Prof Kurt Ammer MD, PhD

Institut für Physikalische Medizin und Rehabilitation,
Hauschkrankenhaus, Heinrich Collinstr 30;
A-1140 Vienna, Austria

Email: KAmmer1950@aol.com

(Manuscript received on 14.07.2006, accepted on 18.07.2006)

Scientific programme of the Combined Conferences

10th European Congress of Medical Thermology

9th National Congress of the Polish Association of Thermology

19th Thermological Symposium of the Austrian Society of Thermology

Zakopane / Poland - 15th-17th September 2006

Thursday - the 14th of September

16.00 - 19.00 - Registration

18.00 - 22.00 Welcome and greetings from Zakopane.

Concert chamber music.

Dinner

Friday - the 15th of September

Session I: 9.00 - 10.30 Thermal physiology

Chair: J.Mercer (Norway), J.Zuber (Poland)

1. "Measurement of human body temperature technological and methodological advances" - Ring E.F.J. (UK)
2. "Regional human skin temperatures after caffeine ingestion" - Pascoe D.D., Strecker E., Foster B., Purohit R.C. (USA)
3. "The effect of exercise on body cooling rates determined by thermal imaging" - Jones CD, Hare DB, Ring E.F.J., Plassman P. (UK)
4. "Relationship between intramuscular temperature and skin surface temperature as measured by thermal imaging camera" - Hardaker N., Selfe J., Richards J., Moss A., McEwan I., Jarvis S. (UK)

Coffee break 10.30 - 11.15

Session II: 11.15 - 13.15 Vascular: Blood flow studies

Chair: F.Ring (UK) R.C. Purohit (USA)

5. "CO₂ reactivity. Applications in infrared imaging" - Govindan S. (USA)
6. "A preliminary report on mapping of vascular perfusion patterns in isolated human lower transverse abdominal flaps using dynamic infrared thermography (DIRT), Indocyanine Green (ICG) fluorescence video angiography and 3-dimensional CT scanning" - Miland AO, Mercer JB, Weerd L, Weum S (Norway)
7. "Association of plantar foot temperatures and sensory loss in diabetic foot disease" - Bharara M, Cobb JE, Claremont DJ, Hadley G, Grewal G, Viswanathan V, Anderson AM, Ramachandran A (UK)
8. "Sniffing out Raynaud's phenomenon" - Harding JR (UK)
9. "Forehead - Nose Thermal ratio and Pain relief in Migraine" - Govindan S. (USA)

Lunch 13.30 - 14.30

General Assembly EAT 14.30 - 15.30

Agenda:

- Report of the president
- Report of the treasurer
- Statement of the auditors
- Election of a new board

Session III: 16.00 - 18.30 Infrared Technology

Chair B.Wiecek (Poland), R.Thomas (UK)

10. "Infrared detectors and camera systems" - Thomas R. (UK), Snell J. (USA)
11. "Compact thermal imager on the base of 2x64 focal plane array with television frame frequency and high thermal resolution." - Zabudsky V, Sizov F, Golenkov O, Kravchenko S, Shevchic A, Behtir O (Ukraine)
12. "Quality assurance of thermal imaging systems in medicine" - Plassmann P, Jones CD, Ring EFJ, Simpson R. (UK)
13. "Procuring and operating the right imager for medical thermography" - Howell KJ, Naeem M, Dziadzio M, Smith R.E. (UK)
14. Thermal image processing for medical applications - advanced hardware and software developments - B. Wiecek, M. Kulinski, B. Ostrowski

Dinner - 19.00 - 22.00

Saturday - the 16th of September

Session IV: 8.30 - 10.30 Imaging and Image Processing

Chair: P.Plassmann (UK), Benkő I (Hungary)

15. "Thermal-visual composite image generation" - Schaefer G, Tait R, Howell K, Zhu SY, Woo P, Harper J. (UK)
16. "Repeatability of the identification of hot spots in thermal images" - Ammer K. (Austria)
17. "Perioperative patient warming: a thermographic evaluation of two systems" - Smith R.E., Hasani A, Dziadzio M. Howell K.J (UK)
18. "DICOM for infrared imaging" - Schaefer G., Huguet J., Plassmann P., Zhu S.Y., Ring F. (UK)
19. "Development of an anatomical marker system for thermal imaging data analysis for use in cryotherapy research" - Hardaker N., Selfe J., Thewlis D., Karki A. (UK)
20. "Human experiments in a vacuum-chamber: testing pilots for emergency cases" - Benkő I. (Hungary)

Coffee break 10.30 - 11.15

Session V: 11.15 - 13.00 Clinical studies

Chair: D.Pascoe (USA) K.Ammer (Austria)

21. "Infrared thermal imaging for the diagnosis of osteoarthritis" - Ammer K. (Austria)
22. "An attempt of comparison the results of thermographic, dermatoscopic, histopathologic and electron microscopy examinations of the skin melanocytic nevi" - Mikulska D. (Poland)
23. Regression of skin lesion in psoriasis vulgaris patients evaluated by thermal imaging - Zalewska A, Gralewicz G, Owczarek G, Wiecek B, Sysa-Jedrzejowska A

24. "Thermovision in the assessment of subarachnoid anesthesia effectiveness" - Matysiak E, Laszczyńska J. (Poland)
25. "Cost-sensitive classification of breast cancer thermograms" - Schaefer G, Nakashima T, Zavisek M, Drastich A., Yokota Y. (UK)
26. "Interesting case studies using infrared imaging for breast screening" - Gardner N. (USA)
27. "Hyper-metabolic lymphatic systems impairing view of vascular features in thermal breast screening" - Gardner N. (USA)
28. "Active dynamic thermography - a new quantitative method of burn depth evaluation" - Renkielska A, Kaczmarek M., Nowakowski A., Ruminski J. (Poland)

Lunch 13.00 - 14.00

Session VI: 16.00 - 18.00 Fever screening, SARS / Avian Flu

Chair: S.Govindan (USA), A.Nowakowski (Poland)

29. "Thermography for human temperature screening-International Standards Organization project" - Ring E.F.J. (UK)
30. "FLIR Systems experience with SARS disease" - Thomas A., Rutkowski P. (Poland)
31. "Facial temperature measurement in children" - Zuber J., Ring E.F.J., Jung A., Rutkowski P. (Poland)
32. "A thermal image validation system for medical infrared Thermology" - Naeem M, Simpson R, Plassmann P, Campbell P, Howell KJ, Agnew JA, Smith RE (UK)

Dinner 19.00 - 23.00

Sunday - the 17th of September

Session VII: 9.00 - 10.30 Animal studies

Chair: R.Harding (UK), K.Howell (UK)

33. "Research review of Thermology in veterinary medicine" - Purohit R.C., Pascoe D.D. (USA)
34. "Thermographic evaluation of cervical dermatome in the bull" - Pascoe C.A., Wolfe D.F., Navarre C.B., Abrams M., Pascoe D.D., Purohit R.C. (USA)
35. "Standardization for the use of infrared thermal imaging in veterinary medicine" - Purohit R.C. (USA)

Coffee break 10.30 - 11.00

Session VIII: 11.00 - 12.00 Final

Chair: A.Jung

36. "Standardisation of thermal imaging. The Anglo Polish Reference Database" - Ring E.F.J, Ammer K, Jung A., Murawski P., Wieck B., Zuber J., Plassmann P., Jones C.D. (UK)
37. "European congress of Thermology 1974-2006: a historical review." - Ammer K. (Austria)

12. 00 Close

Abstracts

Session I: Thermal physiology

MEASUREMENT OF HUMAN BODY TEMPERATURE TECHNOLOGICAL AND METHODOLOGICAL ADVANCES

Ring EFJ.

Medical Imaging Research Group, University of Glamorgan, Pontypridd CF37 1DL UK

The historical link between changes from the normal process of thermoregulation and disease is well documented. Even so it was the development of the thermometer that ultimately replaced the medical art of detecting fever by touching the patient. Galileo's simple thermoscope indicated the temperature of the water, but as an open system it was influenced by atmospheric pressure. Once this was realised and the tube was sealed, the glass thermometer became the standard instrument for measuring temperature to the present day. In medicine, a dramatic change in approach to temperature measurement of sick patients followed the thesis of a German physician Dr Carl Wunderlich. He systematically recorded the temperature of his patients at regular times throughout the day, and charted their progress. His main work sets out some forty different statements about the value of temperature measurement in medicine, the proof of fever by elevated temperatures, indication of worsening or improvement, and ultimately the decrease of temperature leading to death and post-mortem cooling. For 200 years, temperature charts have been a familiar record of hospitalised patients throughout the world. Of special, significance was his concept of the maximum or clinical thermometer, optimised to a narrow temperature range for clinical indication of fever.

The original mercury thermometers are now replaced by coloured fluid, for safety reasons. Electrical sensors, particularly thermocouples have been used in contact temperature sensors. Thermistors are not generally as rapid in response, but well suited to continuous monitoring have their place, especially in intensive care medicine.

Radiometric temperature detection of the naturally emitting infrared radiation has been a more recent development. In clinical medicine, simple radiometers are now used for aural temperature, and in some countries are replacing glass contact thermometers, mainly because they are considered to a lower risk for infection. When used in the ear, a disposable sheath is required, which can in itself be a source of temperature error. However, the presence of cerumen, the variable shape of the ear canal in individuals, and the sometimes poor quality of the instruments themselves, are liable to reduced accuracy overall. At the present time there are a variety of thermal sensors made for medical use. Some are provided with an algorithm for an estimate of core temperature, largely regarded as the "gold standard" in the dictation of fever or hypothermia. However, core temperature is a loose concept, and often poorly defined. The current interest in mass fever screening in airports etc. is based on thermal imaging, but verified by clinical thermometry to relate to core temperature. Work to update the International Standard for these instruments is currently in progress.

Infrared thermal imaging systems have reached a significantly higher level of performance since 2000. Focal plane array detectors with high spatial and thermal resolution are available, at a relatively lower cost than in previous years. Criteria for their use in

medical imaging have been described, and optimal conditions for a physiological recording of temperature should be a part of any thermal imaging routine. Most modern cameras claim to be fully in service within 10-15 minutes from start-up. This may not be valid for all cameras, and some will require much longer before they reach full radiometric specification. Furthermore the time to reach this required stability can change over time. It is therefore important that the user of each camera system is fully aware of the minimum time required before any images of the patient are made. Image capture requires as much standardisation as possible to ensure the ultimate repeatability of the images. Software can be used to help in the precise location of the target and of the regions of interest used for measurement. Improved resolution, stability and accuracy of temperature measurement are significant technical advances. However, critical technique and understanding of thermal physiology are also necessary to obtain clinical benefits from thermal imaging. The new interest in fever screening raises important challenges for the future.

REGIONAL HUMAN SKIN TEMPERATURES AFTER CAFFEINE INGESTION

Pascoe D.D.¹, Strecker E.¹, Foster B.¹, Purohit R.C.²;

¹ Department of Health and Human Performance

² Department of Clinical Sciences, College of Veterinary Medicine; Auburn University, AL U.S.A.

PURPOSE: This investigation examined the influence of a single dose of caffeine (120 mg) on regional skin temperature measures during standing rest, work (70% VO_2 max, 30 minute duration), and passive recovery periods in a warm environment (30°C, 40% rh).

METHODS: The participant's habituation to caffeine was not determined, but regular daily use of caffeine products was recorded. Subjects refrained from using a caffeine product on the experimental days. Work rates (mean = 10.86 km/hr) for the ten physically active college males were determined from a treadmill test for maximal oxygen consumption (mean = 45.2 mL.kg.min⁻¹). During the four randomized double blind investigative trials, all participants either drank 20 ounces of GatoradeTM (G) or GatoradeTM plus caffeine (GC) prior to 60 minutes of passive standing performed at the same time of day and separated by at least 24 hours. During two trials the subjects were followed for an additional 30 minutes of standing, while the remaining two trials consisted of a 30 minute work bout followed by a 30 minute recovery test periods. Physiological measures consisted of thermographically determined skin temperatures, rectal core temperature, heart rate, Physiological Strain Index (PSI), Rating of Perceived Exertion (RPE), weight (sweat) loss, and thermal sensation. A caffeine effect was not observed until 30 minute post ingestion.

RESULTS: Core temperature was higher during the caffeine passive trials after 30 minutes (0.3°C) and exercise trials (0.4°C), and recovery (0.2°C). Post caffeine ingestion the subject's heart rates were slightly elevated, but no differences were observed in the subject's perception of thermal stress, PSI, RPE. Body weight changes indicate greater fluid retention in both the active and passive caffeine trials. Thermal imaging demonstrated slightly elevated temperatures in the chest and slightly cooler in the head with caffeine supplementation while standing in the heated climate. No difference in skin temperatures were observed for the

arms and legs. During the caffeine exercise and recovery trials, the arms and legs were substantially cooler while no difference was observed for the chest region. In contrast, the head was cooler during exercise and then continued to rise in temperature during the recovery period.

CONCLUSION: The ingestion of caffeine (120 mg) in a heated environment increased core temperature, increased heart rate, altered skin temperature, but did not disturb the thermal patterns on the skin surface thermograms.

Research supported by Gatorade™

THE EFFECT OF EXERCISE ON BODY COOLING RATES DETERMINED BY THERMAL IMAGING

C.D.Jones, D.B.Hare*, E.F.J. Ring, P.Plassman

Medical Imaging Research Group, University of Glamorgan, Pontypridd United Kingdom

* School of Sport, University of Wales Institute, Cardiff, United Kingdom

Modern thermal imaging technology provides new opportunities to study non-contact skin temperature in the evaluation of the effects of sport and exercise. In this simple study 8 Sport Science students were tested in a temperature-controlled laboratory before and after a standard exercise. The object was to observe the effects of exercise on the cooling of skin temperature in a constant ambient temperature. The subjects were lightly clothed in loose fitting shorts and shirt. A 20 minute period of stabilisation in the laboratory at 22°C was allowed, prior to exercise, and baseline thermograms were taken of the face, palmar hands, posterior legs, at a standard positioning set by the use of image capture masks. Thermograms were recorded by a FLIR A40 digital IR camera connected by firewire to an image-processing computer with CTHERM software. Subjects were divided into 2 groups control and exercise. The exercise group undertook a standardised 10-minute step test while the control group rested. Subsequently images were captured at 5-minute intervals for the 35 minutes cooling period. The mean temperatures over the regions of interest were extracted from the thermal images and the baseline values were subtracted prior to analysis using a student t-test.

Results: After exercise hands were significantly warmer ($p=0.00054$, $t=-5.87$ one tailed) at 20 minutes compared to control subjects. On average hands were 2.3°C above baseline in the exercise group compared to 0.2°C below baseline in the control group. In the control group the mean hand temperature dropped over the experimental period from 0.2°C below baseline at time 0 to 1.5°C below baseline at 35 minutes ($p=0.0039$, $t=2.35$, two tailed).

Immediately post exercise there was an observable decrease in forehead temperature, in the exercise group compared to controls, which was significant ($p=0.031$, $t=1.94$, two tailed). In the exercised group the mean forehead temperature increased over the experimental period from 1.0°C below baseline at time 0 to 0.5°C above baseline at 35 minutes ($p=0.0036$, $t=3.18$ two tailed). There was also a significant decrease in face temperature

immediately post exercise, in the exercise group compared to controls, ($p=0.026$, $t=2.44$, two tailed). In exercised subjects the mean facial temperature increased over the experimental period from 1.6°C below baseline at time 0 to 0.2°C above baseline at 35 minutes ($p=0.0023$, $t=3.18$, two tailed). No obvious changes were observed in the thigh and calf regions in the control group compared to the exercise group.

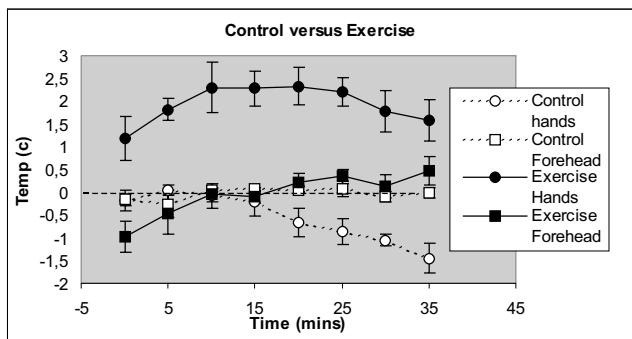
Houdas and Ring showed when moving from a cold to a neutral environment the extremities (including hands) showed a large change in temperature whereas the forehead temperature shows a much smaller change. One might expect to find similar results due to exercise, indeed the present results are comparable; the hands show a large change in temperature following exercise, whereas the forehead shows a much smaller temperature change. However in the present study the forehead temperature is initially lower following exercise but is higher 35 minutes after exercise cessation. This has implications for using forehead temperature as an indication of core temperature.

References

Houdas Y, Ring EFJ. Human Body Temperature: Its Measurement and Regulation. New York, Plenum Press, 1982.

RELATIONSHIP BETWEEN INTRAMUSCULAR TEMPERATURE AND SKIN SURFACE TEMPERATURE AS MEASURED BY THERMAL IMAGING CAMERA

Natalie Hardaker¹, J. Selfe¹, J.Richards¹, A.Moss², I. McEwan², Sally Jarvis²


¹ Department of Allied Health Professions, University of Central Lancashire, England

² Department of Exercise & Sport Science, Manchester Metropolitan University, Cheshire, England

Introduction Cryotherapy is the application of cold to the skin to achieve therapeutic objective in deeper tissues (Knight 1995, Merrick et al 1999 and Merrick et al 2003). Superficial tissues transfer temperature change to deeper tissues, through conduction; deeper tissues therefore experience a smaller decrease in temperature (Hardy & Woodall 1998). Skin Surface (SS) and Intramuscular (IM) temperature during cryotherapy application have been investigated separately. However a relationship between the two parameters has not been directly investigated. It is evident that cooling at the surface has an effect on IM temperature during application of Crushed Ice (CI) (Merrick et al 2003), however the nature of the relationship between SS and IM temperature following cryotherapy application is currently unknown. Thermal Imaging (TI) is a valid and reliable measure of skin surface temperature (Sherman et al 1996, Owens 2004) its ability to measure temperature over a given area makes it an ideal tool for SS temperature measurement following cryotherapy. The aim of this paper is to investigate the relationship between SS and IM temperature in response to cryotherapy.

Methods Nine healthy male participants were recruited from the staff and student population of Manchester Metropolitan University, Manchester, England. Data collection was carried out in an environment chamber set at 22°C. An Anatomical Marker System (AMS) was applied over the right quadriceps to define a precise region of interest (ROI). A baseline thermal image was taken. CI was applied to the right quadriceps for fifteen minutes. Upon removal of the CI, Thermal images were collected at a rate of 1 image min⁻¹ for 40 minutes, IM temperature data were collected at 3cm sub-adipose, simultaneously. Differences and relationships between SS and IM temperature were examined

Results Significant ($p<0.01$) differences exist between mean baseline, SS ($29.92^{\circ}\text{C} \pm 0$) and IM ($35.75^{\circ}\text{C} \pm 0.74$) temperatures. Regression analysis revealed a highly significant ($p<.01$) quadratic relationship between mean SS and IM change in tempera-

ture from baseline (ΔT) during the 40 minute re-warming period ($r^2 = .979$). Significant differences ($p < .05$) exist between SS and IM ΔT up-to 30 minutes into the re-warming period.

Conclusion Fifteen minute cryotherapy application over the quadriceps has a clinically significant IM cooling effect at 3cm

sub-adipose. The quadratic relationship between SS and IM ΔT may be explained by the cooling of the surface area in relation to the dispersion in the underlying tissue volume. IM cooling continues for 35 minutes after removal of CI suggesting a time delay in cooling of deeper tissues.

Session II: Vascular: Blood flow studies

CO₂ REACTIVITY. APPLICATIONS IN INFRARED IMAGING

S. Govindan.

Wheeling, WV., USA

Objective: To review literature and present potential applications for Infrared technology. CO₂ reactivity has been clinically utilized in children and adults safely to study headaches, panic disorder, pathophysiology of anxiety disorder, nocturnal panic, after superficial temporal artery- middle cerebral artery bypass in patients with transient ischemic attacks and watershed zone infarctions and in idiopathic environmental intolerance.

Harold G. Wolff postulated that migraine and vascular headaches (such as cluster headache) are caused by unstable neurogenic cerebrovascular control. Sakai and Meyer tested this theory in patients with vascular headache by measuring rCBF during inhalation of a mixture of 5% CO₂ in air and found it to be correct. Patients with migraine showed excessive cerebral vasodilator responsiveness to 5% CO₂ inhalation, the increases being almost twice those measured in age- matched controls. Furthermore, during the headache interval CO₂ responsiveness was lessened or lost. In normal volunteers the CBF increase to hypercapnia was symmetrical throughout the brain, in patients with migraine the response was asymmetrical with greater vasomotor instability on the side of the most recent and frequent headaches. They used this excessive and asymmetrical cerebral vasodilator response to 5% CO₂ inhalation to investigate pharmacological responses of the cerebral circulation in migraine. Both intra and extracranial circulation are innervated by the trigeminovascular system. Clinical case reports documenting altered extracranial vasomotor response to hypercarbia challenge has been reported from our laboratory in migraine and narcolepsy. Drugs used to treat migraine and narcolepsy improves vasomotor response to induced hypercarbia, stabilizing vasomotor capacitance in the microcirculation/ arteriovenous anastomoses.

Testing extracranial / facial vasomotor response to 5 % CO₂ in air inhalation for three minutes can be utilized in thermography laboratories to image trigeminal/facial microcirculatory vasomotor status and use it clinically.

A PRELIMINARY REPORT ON MAPPING OF VASCULAR PERfusion PATTERNS IN ISOLATED HUMAN LOWER TRANSVERSE ABDOMINAL FLAPS USING DYNAMIC INFRARED THERMOGRAPHY (DIRT), INDOCYANINE GREEN (ICG) FLUORESCENCE VIDEO ANGIOGRAPHY AND 3-DIMENSIONAL CT SCANNING.

Miland ÅO¹, Mercer JB.^{1,3}, de Weerd L², WeumS³.

¹Department of Medical Physiology, University of Tromsø

²Department of Plastic Surgery and Hand Surgery,

³ Department of Radiology, University Hospital of North Norway.

Free tissue transfer is widely used in reconstructive surgery to restore contour and function in patients with soft tissue defects due to trauma, pressure sores and cancer treatment. During free tissue transfer, tissue is transferred from one part of the body to another part, and the so-called flap may be without perfusion for

periods as long as two hours. After transfer to the recipient area, the blood supply to the flap is re-established by connecting (anastomosing) a single artery and a single vein of the flap to the vessels at the recipient site. Recently, DIRT has proven to be a reliable non-invasive technique to establish the patency of the anastomosis and the re-establishment of blood circulation in autologous breast reconstruction surgery (De Weerd et al, 2006).

However, a well-functioning anastomosis is not a guarantee that the whole flap will survive. Before the flap is transferred, it is perfused by many blood vessels; however, their number is reduced to one single artery and vein after transfer. Whether the selected artery can perfuse the whole flap depends on the vascular territory of the selected artery. Information on the vascular territory of this vessel helps to identify areas that are inadequately perfused. These areas will eventually result in partial flap loss causing significant morbidity to the patient. Intraoperative use of ICG video angiography can help to estimate areas in the flap that are poorly perfused allowing them to be resected before they cause partial flap loss. The invasive technique is relatively new and gives only semi-quantitative values. In this comparative study, an isolated lower transverse abdominal flap was used to examine the vascular perfusion patterns of selected arteries using ICG video angiography. These results were compared with the thermal patterns obtained after warm and cold perfusion of the same vessels in an isolated lower transverse abdominal flap. A 3-dimensional (3-D) CT scan was taken after selective perfusion of the isolated flap with a radio-opaque contrast medium. A significant overlap between the IR-thermal and video angiographic images, as well as with the 3-D CT scan images would support the idea that intraoperative use of the non-invasive technique of dynamic infrared thermography technique, could be of help in free flap surgery to estimate areas with adequate perfusion. This would reduce postoperative morbidity for the patients. Preliminary results from these studies will be presented.

References

De Weerd, L, Mercer, J.B. and Bøe Setså, L. (2006). Dynamic infrared thermography, a novel method for monitoring free DIEP flap perfusion intraoperatively. *Annals of Plastic Surgery* (in press).

ASSOCIATION OF PLANTAR FOOT TEMPERATURES AND SENSORY LOSS IN DIABETIC FOOT DISEASE

Bharara M², Cobb JE², Claremont DJ², Hadley G², Grewal G², Viswanathan V¹, Anderson AM³, Ramachandran A¹

¹M V Hospital for Diabetes and Diabetes Research Centre, Chennai, India

²Academic Biomedical Engineering Research Group, Bournemouth University, UK.

³Mechanical Engineering Department, Union College, Schenectady, NY, USA

Neuropathic foot ulcers are a major complication of type 2 diabetes mellitus. Progressive degeneration of sensory nerve pathways is thought to affect thermoreceptors and mechano-receptors equally. The neuropathic foot is characterised by heightened colouration and increased foot temperature. However, clinical evidence in the literature suggests that foot temperature and response of thermoreceptors is not assessed routinely. Thermological techniques such as infrared thermography, liquid crystal thermography (LCT) and electronic thermometry may be useful for screening the neuropathic foot. The choice depends

on cost, spatial resolution, temperature resolution, practicality and clinical significance of results. Liquid crystal thermography (LCT) is used extensively in heat transfer studies. LCT is a non-invasive and high resolution technique used to measure surface temperatures. Liquid crystals reflect incident light producing colour as a function of temperature. Typically, the hue of the colour image is calibrated versus temperature. Recently, the authors have developed a novel thermochromic liquid crystal (TLC) calibration technique using neural networks. Use of LCT in diabetic foot assessment has the important advantage of providing quantitative measurements of response thresholds compared to qualitative measurements based on sensory perception.

A low cost LCT system has been developed which is capable of dynamically monitoring microvascular response to induced thermal stimulus. There are good physiological reasons to expect correlation between our technique and current techniques such as Semmes Weinstein monofilaments and vibration perception techniques (e.g. Biothesiometer). Evidence of correlation between impaired thermoregulatory responses and the degree of sensory neuropathy may indicate common degenerative mechanisms. System design and in vitro calibration has been independently validated for three physical forms of TLC materials. Three encapsulation technologies were evaluated: sprayable liquid crystal paint, thermochromic liquid crystal sheets (TLC) and liquid crystal on latex sheet. Results show that repeatable calibration can be obtained with sprayable paints and TLC sheets under similar lighting conditions. The hue versus temperature curve shifts towards higher hue values for identical temperatures producing a maximum of 15-20% change in hue when incident illumination is changed from minimum to maximum. A neural network training technique has been developed that can compensate for variations in the incident light intensity by merging the shifted hue curves into a single curve determined via the regression analysis of test data. TLC sheets offer higher stability and better colour response. Encapsulated liquid crystals on latex produce a poorer colour response due to a non-uniform spatial distribution of liquid crystals arising from the manufacturing process. This is evidenced by microscopic images obtained during the study of the three forms of liquid crystal. Preliminary results for pressure sensitivity show that TLC sheets are insensitive to vertical pressure in the physiologically relevant range (0-2 Kg/cm²). There is a shift in calibration curve during cooling (relative to heating) leading to temperature bias in both narrow band and wide band TLC sheets. It is envisaged that the LCT technique is sufficiently advanced to carry out a clinical study in order to compare. This paper describes development of the system, in vitro calibration and initial in vivo results from healthy subjects.

SNIFFING OUT RAYNAUD'S PHENOMENON

Harding JR

St. Woolos & Royal Gwent Hospitals, Newport, South Wales, NP20 4SZ, UK.

Infra-Red Imaging is the accepted gold standard test for confirming or excluding Raynaud's Phenomenon, and is one of the

most widely performed investigations in medical thermology. It can help differentiate between primary Raynaud's Disease and Raynaud's Phenomenon associated with connective tissue disorders such as systemic lupus erythematosus (SLE), scleroderma, Sjogren's syndrome and rheumatoid arthritis etc. A fresh approach to the investigation of Raynaud's Phenomenon will be described and discussed.

FOREHEAD - NOSE THERMAL RATIO AND PAIN RELIEF IN MIGRAINE.

Govindan S.

Wheeling, WV, USA

Objective: To evaluate Forehead - Nose Thermal ratio in migraine following vasomotor reactivity testing with hyperoxia and drug treatment and correlate with pain relief.

Materials and Methodology: 10 patients, all Caucasians 9 females and 1 male, ages 22 to 59 with mean age of 40.4 yrs. All were diagnosed as having migraine after physical and neurological exam, laboratory testing, Brain CT / MRI and EEG, and underwent Committee for the Protection of Human Subjects approved infrared imaging protocol for monitoring changes in facial perfusion under the regional control of trigeminovascular system. Extra cranial vasomotor status was imaged with induced hyperoxia using 100% oxygen inhalation for 5 minutes in all patients during headache. Thermograms were also done in two during headache free period, in six before and after treatment. 3 with Imitrex® (sumatriptan succinate injection), 1 with Zomig®Nasal Spray (zolmitriptan), 1 with Migranol®Nasal Spray (dihydroergotamine mesylate) and 1 with Amerge® (naratriptan hydrochloride) tablet. Following treatment. Timing for imaging started after 15 minutes (the half life of CGRP-Calcitonin Gene Related Peptide, neurochemical involved in the pathophysiology of migraine) and at the recommended dosage timings specific to each drug and routes of administration.

Exclusion Criteria: Age below 18 yrs, pregnancy, headinjury 18 months prior to testing, uncontrolled hypertension, recent myocardial infarction, diabetes mellitus, recent chemotherapy or radiation and hemiplegic or basilar artery migraine.

Results: Nose was colder and forehead warmer during headache free period. Improvement in headache and Pain relief following drug treatment for migraine was associated with stabilization/normalization of vasomotor response to hyperoxia challenge (vasoconstriction following hyperoxia) and the nose being colder and forehead relatively warmer.

Conclusion: Forehead - Nose Thermal ratio appears to be sensitive to extracranial vasomotor reactivity and stabilization of the ratio correlates with pain relief following treatment. tissue volume. IM cooling continues for 35 minutes after removal of CI suggesting a time delay in cooling of deeper tissues.

Session III: Infrared Technology

INFRARED DETECTORS AND CAMERA SYSTEMS

R Thomas ¹; J Snell ²,

¹ Snell International, Tyn-y-Coed, Glynhir Road, Pontardulais, SWANSEA, SA4 8PX, UK

² Snell Infrared, P O Box 6, Montpelier, VERMONT, 05601-0006, USA

The use of Infrared Technology has developed significantly in recent years from the very cumbersome, sometimes unreliable, often liquid nitrogen cooled and extremely expensive infrared

cameras prevalent in the later part of the twentieth century. Infrared detector technology has developed to an extent where repeatability, reliability and accuracy are now synonymous with modern systems.

Currently there is a proliferation of Infrared Cameras available worldwide representing a number of differing applications and challenges in choosing the appropriate camera (Runciman, 2000). Examples of applications are wide and include predictive ma-

chine condition monitoring (Tissot, 2005) which directly impacts on the efficiency of British Industry to the use of infrared thermography to improve efficacy during laser therapy on human tissue (Campbell, 2003).

Optimum IR camera specification is an important consideration especially when adopting quantitative thermography. Examples of key specifications are discussed.

Higher specification infrared cameras are emerging and able to satisfy the requirements of medical practice. These systems have high levels of thermal and spatial resolution ideal for diagnostic purposes. There currently remain one or two challenges regarding spatial uniformity and geometric distortion but these are already subject to experimentation and testing (Thomas, 2006). There are a growing number of medical examples of such work in Europe most notably at the University of Glamorgan in the UK.

An important aspect of any infrared programme is training (Snell, 2005). The success often pivots on training and that it is recognised, relevant and most importantly imparts the necessary skills for qualitative and quantitative thermography.

References

Campbell, P.A. et al (2003) Real-time thermography during energized vessel sealing and dissection, *Surg Endosc*, 17, 1645-1645.
 Runciman, H.N (2000) *Thermal Imaging*, CRC Press LLC.
 Snell, J (2005) Thermography: a view from the USA, *Insight*, Vol 47, No 8, August.
 Thomas, R (2006) Reliability in Medical Thermography, *Thermal Solutions Conf. Proc.*, January 23-26, Sarasota, Florida.
 Tissot, J.L (2005) Uncooled microbolometer detector: recent developments at Ulis, Detectors and Associated Signal Processing II, *Proceedings of SPIE*, Vol. 5964, 13-14 September, Germany.

QUALITY ASSURANCE OF THERMAL IMAGING SYSTEMS IN MEDICINE

P. Plassmann*, C.D. Jones*, E.F.J. Ring*, R. Simpson†

*University of Glamorgan, School of Computing, Pontypridd, Mid Glamorgan, CF37 1DL, Wales, UK

†National Physical Laboratory, Radiation Thermometry Group, Hampton Road, Teddington, Middlesex, TW11 0LW, UK

Standardisation is important for reliable use of infrared thermal imaging in medicine. Infrared camera systems are now of higher performance with improved reliability, which can lead the operator to assume that the system is continually giving optimal performance. This, however, is not the case.

We propose a series of simple experiments based on inexpensive and easy to acquire materials, which a thermographer can use under normal clinical conditions to monitor the performance of thermal imaging equipment in order to maintain confidence in the measurements made. The 5 tests proposed here are not intended to replace those performed by manufacturers or calibration laboratories, but can provide valuable information on both short and long-term camera performance. The proposed tests identify: a) offset drift after switching on, b) long-term offset drift, c) offset variation over the observed temperature range, d) image non-uniformity and e) the thermal 'flooding' effect.

Measurement results based on the above experiments will be presented which demonstrate that cameras may drift over several degrees centigrade in less than 2 hours after switching on. We will also show that imaging equipment can produce a varying amount of measurement error (up to 1.5 degrees centigrade), which depends on the temperature range observed. Results also show that equipment may be prone to non-linear errors (in the region of 1 degrees C), which are caused by deficiencies of the optical system and will manifest themselves if the equipment is not calibrated regularly.

Although the proposed tests will identify errors if present, due to the simplicity of the materials used, the tests are only of limited use for the quantification of these errors. We therefore present

experimental results obtained using a new 3-point calibration blackbody source currently under development by the UK's National Physical Laboratory (NPL) specifically for use in medicine. The source exploits the stability of the melting/freezing point of certain chemicals which makes it extremely stable and when in use does not require a power source, cables or electronic stabilisation circuits. This source, once commercially available, will provide a highly reliable and practical tool not only for the quality control of thermal imaging equipment but by virtue of its inherent precision it will also enable cross-calibration for multi-centre trials.

COMPACT THERMAL IMAGER ON THE BASE OF 2X64 FOCAL PLANE ARRAY WITH TELEVISION FRAME FREQUENCY AND HIGH THERMAL RESOLUTION.

V. Zabudsky, F. Sizov, O. Golenkov, S. Kravchenko, A. Shevchik, O. Behtir.

Institute of Semiconductor Physics, NAS of Ukraine, 03028, Kyiv, pr. Nauki, 41,

The portable infrared imager is designed for detection of thermal (infrared) radiation, subsequent processing of the signal and its real-time visualization on the built-in LCD display or on an external computer monitor. The imager is supplied with the original software. Fast USB 2.0 interface is used for communication with a computer. The infrared sensor is a nitrogen-cooled 128-element HgCdTe photodetector array operating in the spectral range of 2 to 12 microns (or 8-12 μ m).

Application areas:

Medical diagnostics: contactless and intrusionless detection of inflammations, blood circulation anomalies and other pathologies, particularly in oncology (breast cancer, thyroid gland cancer), traumatology, gynaecology, post-operation complications control, etc. The device is portable and easy in use, making it suitable for mobile diagnostic units. The imager has undergone several clinical tests and is certified by the Ministry of Health of Ukraine.

Ecological monitoring and nondestructive control: detection of thermal losses of buildings, pipelines, monitoring of moving engine parts, control of fire-risk areas, etc.

Technical specifications of the imager

FPA configuration	Monolithic HgCdTe detector
Spectral range	2-12 μ m (8-12 μ m)
Number of photodiode elements	128
Photosensitive element area	30x30 μ m
Size of image	160x120 pixels
Cooling method	By liquid nitrogen, 77 K
Instantaneous field of view: Horizontal Vertical	≤ 0.0015 radian ≤ 0.0015 radian
Field of view: Horizontal Vertical	>0.4 radian >0.4 radian
Temperature resolution of photodetector at 30N	< 80 mK
Distance from object	0.5-100 m
Frame frequency	50 Hz
Nitrogen refill cycle time	4 hours
Line supply	~220 (± 12 DC) V
Dimensions	350x125x180 mm
Weight	3,5 kg

THERMAL IMAGE PROCESSING FOR MEDICAL APPLICATIONS - ADVANCED HARDWARE AND SOFTWARE DEVELOPMENTS

B. Wiecek, M. Kulinski, B. Ostrowski

Technical University of Lodz, Institute of Electronics, Lodz, Poland

This paper presents low-cost microbolometer IR camera based on 284x288 focal plane array (Fig.1). Read-out control circuit is presented with IEEE1394 interface to transmit image to the computer in real time (Fig. 2). Nonuniformity correction (NUC) is mentioned as an important problem which can reduce significantly the image quality (Fig. 3). For simplicity of the hardware implementation, NUC processing is performed at the host level using both 1 and 2-point method, and the new approach introduced by the authors.

The integrated software for thermal image processing both for static (passive) and dynamic (active, lock-in) thermography is presented. This software cooperates with hardware interfaces in COM environment, effectively using the IEEE 1394, or/and PCI image capturing devices. Additionally, it controls power generator used in lock-in thermal wave approach. New function of the software is also presented, such and statistical parameter calculation, windowed FFT analysis, time-domain image processing, filtering, calibration, etc.

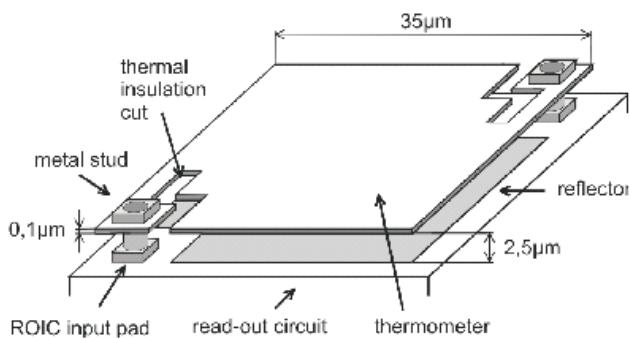


Fig. 1
Microbolometer cell in focal plane array

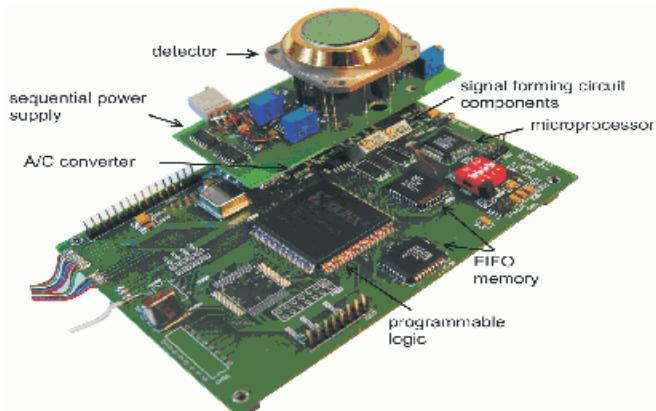


Fig. 2
Readout circuit of microbolometr array

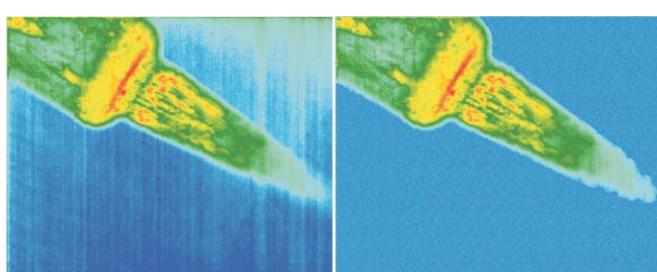


Fig. 3
Nonuniformity correction

PROCURING AND OPERATING THE RIGHT THERMAL IMAGER FOR MEDICAL THERMOGRAPHY

Howell KJ¹, Naeem M², Dziadzio M³, Smith RE²

Departments of ¹Rheumatology and ²Medical Physics, Royal Free Hospital, London, UK,

³Centre for Rheumatology, Northwick Park Hospital, London, UK

At present, very few hospitals in the UK offer a thermographic imaging service. Thermography has not displaced other modalities in the diagnosis of deep vein thrombosis, and is no longer deemed appropriate for breast imaging (1), although a later review (2) suggested that thermal imaging was still of utility. However, thermography retains a niche role in rheumatology for the assessment of, *inter alia*, Raynaud's phenomenon, morphea and carpal tunnel syndrome.

The general utility of medical thermography may be reconsidered as recent advances in focal plane array (FPA) detector technology have brought rapid improvements in thermal imager performance. More are on the market than ever before and at increasingly competitive prices. The vast majority are still purchased for non-medical uses. The performance expectations placed on a thermal imager used for medical thermography are necessarily different from those placed on an imager utilised for engineering applications, but these differences are not universally recognised.

This paper will address the criteria to follow when acquiring a thermal imager for medical use, based on our vast experience in rheumatology.

• Cooled or uncooled FPA detector

• Array size and resolution

• Thermal accuracy and sensitivity

• Dynamic response

• Time to reach stability

• Software for image capture and analysis

• Methods of storing, reporting and disseminating images to referring physicians

• Calibration and service – the “whole life cost” of the imager, and its lifetime

• Operating environment

• Risk assessment – (note thermal imagers are not typically CE-marked to the Medical Devices Directive 93/42 EEC).

If thermography is not to be misapplied in medicine, ultimate responsibility lies with the clinical thermographer to procure the best thermal imager for their applications. An ongoing programme of Quality Assurance (QA) is also vital to ensure that thermal detector performance is understood, and the imager continues to operate within the exacting criteria necessary for reliable medical thermography, especially in the context of longitudinal and multicentre studies. UK centres are involved in work to develop QA protocols that can be adopted by all medical thermographers (3,4). Annual calibration and service of the imager by the manufacturer should be in addition to, rather than in place of, these regular QA checks specific to medicine.

References

1. Report of the working group to review the national cancer institute breast cancer detection demonstration projects.” *J Natl Cancer Inst* 62:641-709, 1979.
2. JR Keyslingk, PD Ahlgren, E Yu, N Belliveau, M Yassa, “Functional infrared imaging of the breast.” *IEEE Engineering in Medicine and Biology* 19:30-41, 2000.
3. P Plassmann, EFJ Ring, CD Jones, Quality assurance of thermal imaging systems in medicine.” *Thermology International*, 16/1:10-15, 2006.
4. HC McEvoy, R Simpson, G Machin, “Multi-temperature fixed-point validators for medical thermal imaging applications.” *IPEM ASM*. 2005

Session IV: Imaging and Image Processing

THERMAL-VISUAL COMPOSITE IMAGE GENERATION

SchaeferG.¹, Tait R¹, Howell K.², Zhu SY³, WooP⁴

Harper J.⁴

¹Nottingham Trent University

²Royal Free Hospital

³University of Derby

⁴Great Ormond Street Hospital

Often visual and thermal images of the same patient are taken to relate inflamed areas to the human anatomy which is useful for medical diagnosis as well as for assessing the efficacy of any treatment. This process requires great expertise and is subject to the individual clinician's ability to mentally map the two distinctly different images.

We present a completely automatic approach to generating a composite thermal-visual medical image based on the two modalities which makes it possible to easily cross-reference regions with unusual temperature distributions to the human anatomy. Based on our earlier work we employ an image registration process to perform the actual overlay of the two images. However to prevent manual intervention in the form of hand-segmenting the visual image into patient and non-patient (i.e. background) areas, we apply a skin detection algorithm which is used to identify the outline of the patient and hence (following some morphological processing) to perform the segmentation step. After segmentation, intensity-based image registration (based on an affine transform model) is employed to align the two images and to generate the superimposed image that is then presented to the clinician. Experimental results based on a series of morphea (localised scleroderma) patients are presented.

REPEATABILITY OF THE IDENTIFICATION OF HOT SPOTS IN THERMAL IMAGES

Ammer K.

Institut für Physikalische Medizin und Rehabilitation,
Hanuschkrankenhaus, Vienna, Austria

Hot spots are regarded as diagnostic signs in thermal images of patients suffering from tennis elbow or fibromyalgia. However, the reliability of the identification of hot spots is not well known and may be poor. The **aim of this study** to investigate how precisely hot spots can be identified from thermal images.

Methods 32 images recorded from fibromyalgia patients in the view upper back were reviewed. Hot spot were identified in two ways. Firstly, the colour scale of the thermal images was compressed in order to increase the contrast between cool and warm areas- Then hot spots were identified by eyes and the identified area was accepted as a hot spot when the temperature difference to the surrounding areas was greater than 0.5 degrees. Secondly, two isotherms were generated at temperature levels 1 degree apart. The mean temperature of hot areas within the isotherm at the higher temperature was determined and compared to the mean temperature of the surroundings of the hot spot. These temperature measurement procedures were repeated two days later. The findings were statistically analyzed with respect to method of hot spot identification and time of investigation.

Results: The number of hot spots per image varied between 1 and 8. Identification of hot spots by eye was impossible in two thirds of the images prior to the compression of the colour scale.

A higher reproducibility was obtained for the isotherm method than for the hot spot identification by eye. However, the isotherm method is time consuming and not fully reproducible.

PERIOPERATIVE PATIENT WARMING: A THERMOGRAPHIC EVALUATION OF TWO SYSTEMS

Smith RE¹, Hasani A¹, Dziadzio M² and Howell KJ³

Departments of ¹Medical Physics and ³Rheumatology, Royal Free Hospital, London, UK,

²Arthritis Centre, Northwick Park Hospital, London, UK

Physiological mechanisms, including changes in blood flow and modifications of central thermoregulatory control, cause body temperature to fall during general and regional anaesthesia. Post-operatively, hypothermia results in longer stays in the recovery area and delayed discharge from hospital. The current "revolution" in the UK NHS has lead to an increase in the number of day-case procedures. Technology to maintain a patient's body temperature perioperatively should be employed optimally in order to sustain the throughput of day-case surgical patients, who should be fit for discharge within a short time.

Blood and fluid warmers together with patient warmers are used. The former are designed to ensure that the temperature of blood and fluids infused into a patient is close to body temperature. They must accommodate a wide range of infusion rates, extending to over 400 ml min⁻¹, the inevitable heat loss between the warmer and the patient, and the absolute requirement not to heat the infusates much above 40 °C lest thermal degradation occurs.

Patient warmers fall into two categories: hot-air warming blankets and warming mattresses. Both actively warm the patient and reduce heat loss to the environment. They each have a role to play depending on the nature of the surgical procedure. Mattresses must have appropriate pressure relieving properties.

Warming blankets lie over the patient. They are disposable single patient use items connected, via a flexible tube, to a blower that warms filtered ambient air. The warmed air passes out of the blanket and onto the patient.

We have performed pilot work with one warming blanket system, using a thermal camera used clinically (Flir SC 500) which has shown that the system does not deliver air to the blanket at the expected temperature, and that the heat loss is variable depending on the configuration of the corrugated tube connecting the blower to the blanket.

The purpose of this work is to report the formal evaluation of the thermal performance of two hot-air warming blanket systems on the UK market. Whilst thermal performance is one factor in determining overall system performance it is also necessary to consider: ease of use; cost of use; and reliability.

We shall present results comparing the two systems and demonstrate that thermal imaging has applications in medicine that extend beyond clinical thermography.

DICOM FOR INFRARED IMAGING

G. Schaefer¹, J. Huguet¹, P. Plassmann², S.Y. Zhu³, F. Ring²

¹Nottingham Trent University,

²University of Glamorgan,

³University of Derby

Recently, efforts have been made towards standardising the process of medical infrared imaging. Clearly, one aspect of such a standardisation procedures has to concern the actual file format of the digital thermograms. Currently, camera manufacturers typically employ their own proprietary formats which hinders exchange and communication of the images while in other medical fields, DICOM (Digital Imaging and Communication in Medicine) has emerged as a standard for storage and exchange of medical images. In our work we investigate if and how the DICOM standard can be adopted for thermal medical imaging.

The results of our study are encouraging. Virtually all information necessary can be embedded into DICOM based on the current version of the standard, including the actual image and temperature information (and the mapping of temperature values to false colours to be displayed), patient, study and clinician information and information on pre-defined regions of interest.

Based on the study, a conversion application capable of exporting CTHERM images to DICOM has been developed and will also be introduced.

DEVELOPMENT OF AN ANATOMICAL MARKER SYSTEM FOR THERMAL IMAGING DATA ANALYSIS FOR USE IN CRYOTHERAPY RESEARCH

Natalie Hardaker ¹, J Selfe ¹, D. Thewlis ¹, Anne Karki ²

¹ Department of Allied Health Professions, University of Central Lancashire, England

² Physiotherapy, Satakunta Polytechnic, Pori, Finland.

Introduction Cryotherapy is a well established treatment modality for the immediate care of acute soft tissue injury (Bleakley et al 2004). Currently, treatment protocols remain ambiguous. A skin surface temperature of 10 – 17°C, is reported to reflect desirable underlying physiologic responses (Bugaj 1975, Knight 1976 and Zachariassen 1991), indicating the value of skin surface temperature data. Existing methods of TI data analysis lack standardisation and reliability. These methods are often dependent upon the opinion of the assessing reporter or incorporate irrelevant temperature data. The aim of this study was to develop an accurate and reliable method of TI data analysis based on an Anatomical Marker System (AMS) to define a precise region of interest (ROI). The focus is the Anterior Knee.

Methods Nine Patellofemoral Pain patients were recruited from Bolton PCT and Bolton Hospitals NHS Trust, England. Thermally inert markers were placed at specific anatomic locations, defining an area over the anterior knee. A baseline thermal image was taken. Patients underwent a 3 minute thermal washout of the affected knee, a technique developed specifically for this project using an Aircast cryo/cuff (Surrey, England). Thermal images were collected at a rate of 1 image min-1 for a 20 minute rewarming period. A Matlab (version 7.0, The Mathworks Inc) program was written to digitise the marker positions and subsequently calculate the mean of the area over the anterior knee. Virtual markers formed an ellipse, defining an area representative of the patella shape. The mean value of the full pixels within the ellipse, determined the mean temperature of this region.

Results The ICC produced coefficients within acceptable bounds, ranging from 0.82 to 0.97 indicating clinically acceptable inter-rater reliability.

Conclusion The AMS provides an accurate, reliable and easily reproducible method for TI data analysis. The focus of this paper is the knee, however, principles of the AMS will be applicable at other anatomic locations, using a minimum of three markers to allow definition of an area.

HUMAN EXPERIMENTS IN A VACUUM-CHAMBER: TESTING PILOTS FOR EMERGENCY CASES

Imre Benkő

University of Technology and Economics, Budapest, Hungary

The imagery of the thermal radiation of various objects in a defined range of the infra-red (IR) spectrum opens new vistas to researchers and practical specialists in the field of engineering and other sciences (medicine, biology, etc.). The devices creating IR-images, thermographs and thermogrammeters which con-

vert the variation on the surface of objects' thermal radiation to visible image, i.e. thermogram, work in this principle.

The examination of the human organisms as a thermal system leads to various conclusions in the field of biology and medicine. The comparison of the IR-images to the results of medico-diagnostic examinations permits further conclusions or makes it possible to apply them as screening test. The paper presents an example on the possibilities of ergonomic-biologic examinations (the effect of changing ambient conditions) mainly from the aspect of thermal engineering.

Ergonomic personality test by means of IR-images. The different personality traits e.g. the way the individual reacts to various effect of the environment are well-known from psychology. However, this is not easy to determine such reactions without disturbing person by the use of instruments. In this cognitive process we can also avail ourselves of the information provided by IR-images. In case of emergency or simply when emergency is possible to occur, or in an less dramatic situation, e.g. when a question is put to someone in an examination, the reaction of individuals manifests itself in the change in the thermal state of the head, namely that of the face, forehead and/or in the eye-nook, as well as on the hands. The character and degree of the change in temperature is in connection with the reaction brought about in the course of solving the problem, or only by the state of preparedness, and it differs according to the individual, but it is characteristic of the person. However, the same symptoms are effected by the change of ambient temperature and pressure.

Pilot's test. In the case of an airliner's decompression the pilots have to tolerate some lack of oxygen (anoxia) at 0.5 bar pressure for approximately 15 minutes without any oxygen respiration. The temperature of the eye-nook and the forehead are adequate indicators of the human thermophysical condition. The pilots' reactions were tested in a vacuum-chamber. A figure shows the temperature change in the chamber vs. elapsed time from 'taking-off' to 'landing' without pressure equalizing. The model of decompression of an airliner's emergency case can be seen in function of altitude (chamber pressure) vs. time. Pilot's thermal data (temperature of eye-nook and forehead) vs. process time serve as indicators of the pilot's adjustment to changing ambient parameters. The paper presents two series of IR-pictures taken of two pilots with different capability for adjusting to decompression.

References

- [1] Benkő,I. Thermogrammetry of face among changing ambient conditions. 6th Conference on Thermogrammetry and Thermal Engineering(THERMO) Abstracts Vol.II pp.283-285, Budapest 31 May-2June, 1989.
- [2] Benkő,I. Energetical and other application of the thermogrammetric CAD. Mérés és Automatika (Measurement and Automation) , Vol.37. No.2. Pp.69-73, Budapest, 1989.

Session V: Clinical studies

INFRARED THERMAL IMAGING FOR THE DIAGNOSIS OF OSTEOARTHRITIS

Kurt Ammer

Institut für Physikalische Medizin und Rehabilitation, Hanuschkrankenhaus, Vienna, Austria

Osteoarthritis is the most prevalent rheumatic disease worldwide. It can be described as a pain syndrome based on degenerative changes of joints with episodic pain peaks due to inflammation. This combination may lead to deformity, muscle wasting, muscle weakness and to subsequent need of joint surgery.

What can infrared thermal imaging contribute to the diagnosis of osteoarthritis? Firstly, the state of inflammation can easily be detected by the heat dissipated from the inflamed joint. Although osteoarthritis is not the sole cause of joint inflammation, temperature elevation seen in osteoarthritis is usually moderate, but rheumatoid arthritis, joint infection or gouty attacks present with a much higher temperature increase. Hot areas can easily be detected over elbow, wrist, knee and ankle joints, but might be difficult to see over small finger joints, and are rare or nearly impossible to find over shoulder or hip joints or over the spine.

A cold water challenge can be useful in the identification of increased temperature over small finger joints as they show up very early in the recovery phase of finger temperature. Normally, fingers re-warm from the fingertips to the hand, but in case of inflammation this sequence is disturbed and the inflamed joints will appear at first.

In osteoarthritis of the shoulder or the hip, the area over the affected joint may appear colder than the contra-lateral side due to reduced muscular activity. Cold muscles may also be found adjacent to chronically inflamed knee or ankle joints which may therefore be restricted in range of motion. In the first case the thigh may present with low surface temperature, in the other case the lower leg appears cold.

Thermal imaging is only helpful for diagnostic decisions, if the imaging and analysis of thermograms is performed under strict and standardised conditions. The protocol must include procedures and preparations for the object or subject to be imaged, the camera system and its calibration, the patients position for image capture and standards for image analysis. The protocol for image capture and image analysis that was developed at the School of Computing, University of Glamorgan, provides means to increase the reproducibility of measurements from thermal images. Thus applying strict protocols, increases the diagnostic utility of infrared thermography.

COMPARING THE RESULTS OF THERMOGRAPHIC, DERMATOSCOPIC, HISTOPATHOLOGIC AND ELECTRON MICROSCOPY EXAMINATIONS OF SKIN MELANOCYTIC NEVI

D. Mikulska¹, R. Maleszka¹, I. Dziuba², J. Breborowicz², M. Parafiniuk³

¹Department of Dermatology and Venereology Pomeranian Medical University, Szczecin

²Department of Pathomorphology Medical Academy, Poznan

³Department of Forensic Medicine, Pomeranian Medical University, Szczecin

The aim of the study was to compare thermographic and histopathologic analyses of melanocytic skin nevi. In addition, the mitotic activity of cells was analysed by the expression of Ki-67 antigen in histopathological studies of few melanocytic nevi which showed temperature changes in the thermographic study.

Material and Methods: In total, 160 melanocytic nevi from 35 patients were studied. These included 22 patients with a diagnosis of atypical nevus syndrome. The thermographic analyses were performed using Therma CAM TM SC 500 thermographic camera. The thermograms were analysed using AGEMA Report 5.41 computer programme. The differences between maximal (Tmax) and minimal (Tmin) temperatures within each pigmented lesion were calculated: $\delta T = Tmax - Tmin$. In 20 control subjects healthy skin without melanocytic nevi was studied. In the total group of 160 melanocytic nevi, the values of δT coefficients were 1.41 °C. In total 47 melanocytic nevi showed signs of atypia in the clinical and dermatoscopic examination and were treated surgically in the Department of Dermatology and Venereology of Pomeranian Medical University. Subsequently histopathologic examinations of the excisions were performed. For the evaluation of the mitotic activity in 15 melanocytic nevi, the expression of the Ki-67 proliferative antigen was studied histochemically. Ten melanocytic nevi with $\delta T > 1.41$ °C and five melanocytic nevi with $\delta T < 1.0$ °C were evaluated. Additionally, in five cases of skin melanoma the expression of Ki-67 antigen was investigated.

Results: Mean value of δT coefficient for control group was 0.74 ± 0.128 °C, whereas for 141 melanocytic nevi $\delta T < 1.41$ °C and for remaining 19 nevi - $\delta T > 1.41$ °C. The correlation between atypia in the histopathological examination and increased value of δT coefficients was noticed. For ten melanocytic nevi with $\delta T > 1.41$ °C, expression of Ki-67 was 1-9%, for 5 melanocytic nevi with $\delta T < 1.0$ °C the Ki-67 expression was 0-0.5%, whereas for 5 skin melanoma - 10-26%.

Conclusions: 1. Melanocytic nevi with $\delta T > 1.41$ °C in thermographic study shows frequently histopathological signs of cell atypia. 2. The elevated values of δT could be caused by the increased mitotic activity of melanocytic skin nevi.

REGRESSION OF SKIN LESION IN PSORIASIS VULGARIS PATIENTS EVALUATED BY THERMAL IMAGING

Anna Zalewska¹, Grzegorz Gralewicz², Grzegorz Owczarek², Bogusław Wiecik³, Anna Sysa-Jedrzejowska¹

¹Department of Dermatology, Medical University of Lodz, Poland

²Central Institute for Labour Protection – National Research Institute, Warsaw, Poland

³Institute of Electronics, Computer Thermography Group, Technical University of Lodz, Poland

Psoriasis vulgaris is a chronic skin disease of inflammatory background involving about 2% of human population worldwide. The aim of the study was to evaluate usefulness of thermal imaging in psoriasis vulgaris lesion regression. Only in-patients with psoriasis vulgaris and negative history of joint pain were included in the study. ThermaCam INFRAMETRICS 290E thermocamera with temperature resolution of 0.1 °C was employed. Both visual and thermal images of four body regions i.e. chest, back, upper and lower limbs of lesional and lesion-free areas were recorded and further analyzed. With the regression of skin lesions, a significant decrease in temperature was observed both over psoriatic skin lesions and lesion-free areas. What is more, a negative correlation between temperature and desquamation on the chest and between temperature and infiltration on the back were found. In conclusion, temperature monitoring in psoriasis vulgaris patients could serve as an early marker of remission or progression of psoriatic lesions on condition that proper patient preparation and equipment maintenance is continuously preserved.

THERMOVISION IN THE ASSESSMENT OF SUBARACHNOID ANESTHESIA EFFECTIVENESS

Matysiak E., Laszcynska J. Poland
(No abstract received)

COST-SENSITIVE CLASSIFICATION OF BREAST CANCER THERMOGRAMS

G. Schaefer¹, T. Nakashima², M. Zavisek³, A. Drastich³, Y. Yokota²

¹Nottingham Trent University, U.K.

²Osaka Prefecture University, Japan

³Brno University of Technology, Czech Republic

In this paper we present an approach to cost-sensitive classification of breast cancer thermograms based on statistical image features and fuzzy logic. Thermography provides a real alternative to other methods such as mammography for diagnosing breast cancer as it is a non invasive technique that is able to detect physiological changes causes by early cancer growth.

In our approach we calculate several statistical features from the digital thermogram and use these in a classification stage to distinguish between benign and malignant cases. Image features including mean temperature, standard deviation, 90-percentile, temperature histograms, temperature co-occurrence histograms, entropy information and image moments, are calculated for both breast regions and bilateral differences between the two sides serve as features to be employed during the classification.

We use a fuzzy logic if-then rule based classifier to assign each thermogram as either benign or malignant. Crucially, the classifier we employ can be easily modified to provide a cost-sensitive approach to classification where the goal is not necessarily to maximise the overall classification rate but to minimise the overall cost. In cases such as cancer diagnosis clearly the associated costs for misdiagnosing benign and malignant cases should not be equal as falsely assigning a malignant case as benign will have more severe consequences than diagnosing a benign tumour as malignant.

Experimental results on a training set of about 140 patients give good classification rates of up to about 98%. Employing the cost-sensitive classifier gives similar classification performance but also provides greatly reduced overall costs on the same dataset.

INTERESTING CASE STUDIES USING INFRARED IMAGING FOR BREAST SCREENING

Gardner N.

San Rafael, California, USA

I will be presenting four case studies of interesting phenomena that will hopefully help to create a better understanding of what we are seeing in infrared imaging. My goal is to help create more uniform thermology reports as well as present my unusual patients. It is my feeling that in order for thermology to be accepted as an accompanying breast screening tool by the mainstream medical community, we need have a professional consensus of exactly what the different features that we are seeing in infrared imaging, represent. This presentation is an attempt to demonstrate my impressions of the data seen in thermology studies.

1. Paradoxical response to the autonomic challenge being a case of over stimulated sympathetic nervous system from exhausted adrenals.

2. Psycho-angiogenesis one of 72 case studies in the USA. This case study is presented with pathology report and medical description.

3. Hypo-metabolic thyroid seen in a thermography breast study where all of the hyperthermic features were extremely low ap-

proximately 31 C and the hypothermic features were approximately below 27 C.

4. Extreme case of hyper-metabolic lymphatic system indicated by the diffused hyperthermic features seen throughout her entire body in a woman with extended exposure to environmental pollutants.

5. Case study monitoring a patient diagnosed with breast cancer over 20 years ago showing the natural progression of the disease with no medical intervention.

HYPER-METABOLIC LYMPHATIC SYSTEMS IMPAIRING VIEW OF VASCULAR FEATURES IN THERMAL BREAST SCREENING

Gardner N.

San Rafael, California, USA

I will be presenting five case studies of patients with varying ratings of breast thermology who have one thing in common, thermographic indications consistent with a hyper-metabolic lymphatic system. I will attempt to show two distinctive lessons that can be learned from comparison studies before and after a cellular detoxification protocol is adhered to: First of all, that a comprehensive cellular detoxification program, addressing the cleansing of all the organs of elimination, the lymphatic system and subsequent into intracellular tissue can and does strengthen the immune system and subsequently improve this hyper-metabolic condition of the lymphatic system. And secondly, by detoxifying the lymphatic system, thus eliminating excessive hyperthermic features seen in infrared imaging, it helps to distinguish what is truly characteristic of hyper-vascular features. The end results is a patient with a thermal study that is clearer and easier to read and thus easier to monitor improvement or advancement of the hyperthermic blood vessels.

ACTIVE DYNAMIC THERMOGRAPHY - A NEW QUANTITATIVE METHOD OF BURN DEPTH EVALUATION

Alicja Renkielska*, Mariusz Kaczmarek**, Antoni Nowakowski**, Jacek Ruminski**.

*Department of Plastic Surgery and Burn, Medical University of Gdansk,

**Department of Biomedical Engineering, Technical University of Gdansk, Poland.

Proper evaluation of the surface and depth of a burn wound especially in the case of a severe burn, enables an appropriate choice of treatment to be made. This choice decides subsequently about the success of the entire medical treatment. Clinical assessment is currently the most frequently applied method in burn depth evaluation. Unfortunately the use of this method results in a high number of false diagnoses. Numerous other methods have therefore been introduced, and none of them has been fully accepted by clinicians treating burns.

The goal of this work was to evaluate and compare the usefulness in burn depth assessment of selected modalities of infrared imaging (IRI), namely classical static thermography (ST) and active dynamic thermography (ADT), based on analysis of thermal transients after external tissue excitation using pulse optical heating. Commonly used clinical methods and histopathological assessment were taken as reference methods. To achieve the goal set an objective quantitative criterion for burn depth evaluation has been elaborated, so that the proper mode of burn treatment may be selected.

In this work the following methods have been employed: two clinical methods - the first according to clinical degrees of I, IIa, IIb and III and the second according to the criterion "Wound healing within 3 weeks after burn", histopathological assessment, ST and ADT. The methods presented were employed in *in vivo* animal experiments on 3 six-week-old white Polish landrace

domestic pigs, each weighing approximately 20 kg. Analysis was made of 23 burn wound inflicted according to the modification of Singer's procedure and 6 areas of unburned skin. The analysis also made use of bacteriological methods.

The animal experiment results obtained were subjected to statistical analysis by means of the Anova variance analysis method and by comparing the average post hoc values with Tukey's RIR test. The accuracy, sensitivity and specificity of the methods tested with reference to the characteristic sought, namely healing of the wound within 3 weeks of the burn, have been quantitatively calculated.

When the clinical method of discriminating grades of depth of burn wound was applied and a prognosis of healing result based on this, the calculated accuracy and sensitivity were low, at 62.5% and 44.2% respectively, but the specificity, at 100% was incomparably high. These properties betray the limited usefulness of the method. When histopathological assessment was employed, the total number of accurate prognoses (the measure of the accuracy of the method) rose to 89.1% and sensitivity to 97.7% while specificity decreased to 71.4%. from these results it may be concluded that usefulness of the histopathological assessment of burn depth is considerably greater than that of the clinical method.

One the basis of the bacteriological results the possibility of the thermographic results being influenced by the micro-organisms has been excluded.

The values obtained for the ST parameter, T, for both the groups involved when histopathological assessment was used, different at the level of statistical significance, ($p<0.001$). this demonstrates the high classificatory power both methods (ST and histopathological evaluation). The best results were obtained by correlating the ST method with the ex post classification into wound that did heal within 3 weeks following infliction and those that did not heal spontaneously during this period. The threshold value of the T parameter obtained $T=0.30C$, enabled a "prognostic" classification to be made of the burn wounds into those that would heal within 3 weeks of burning and those that would not heal spontaneously in this time and, in consequence, also enabled a proper choice to be made of method of treatment.

The mean values calculated for the synthetic ATD parameter did not differentiate the burn wounds classified into clinical groups at the level of statistical significance. In contrast, however, they did differentiate in this way the groups established according to the histopathological criterion (shallow or deeper than 60% of dtms). When the ADT method is employed, the results of classification based on the histopathological criterion

(60% of dtms) are identical to these based on the clinical criterion "healing within 3 weeks". The calculated threshold value of the time constant =10.125s and the quality of the method are as follows: accuracy - 100%, sensitivity - 100% and specificity - 100%. In the interpretation of these unusually advantageous results necessary caution should be maintained because of the relatively small number of cases.

In the conclusion it is stated that the clinical method in common use for dividing burns into degrees of I, IIa, IIb and III does not allow for an objective classification which is based on a quantitative criterion. Introduction of the IRI modalities as complementary methods does not improve the diagnostic value of the clinical assessment. In contrast, when the criterion of healing of the burn wound within 3 weeks of burning it does enable burn wound depth to be evaluated and, in consequence, a proper mode of treatment to be selected.

The histopathological assessment also discriminates the burn wound depth objectively and thoroughly. However, this method has many shortcomings which cause that it remains a reference for newly introduced methods but has marked limitations in routine application in clinical practice. Of the IRI modalities, ST allows for the objective discrimination of burn depth based on a quantitative criterion. The quantitative interpretation of the method is based on the difference between the mean values of skin area temperature for the burn wound area and the unaffected reference skin area (T), a parameter which depends closed on the influence of the environment. This should be regarded as a drawback of the method.

ADT as the single method of choice does allows for the objective classification of burn depth on the basis of a quantitative criterion. The optimal time for the investigation is the second day after the burn. The statistical analysis applied demonstrates the priority of ADT among all the methods investigated in this work. The quantitative synthetic parameter of ADT, the time constant measured in [s], supplies information about the basic physical thermal parameters of the tissue. Possessing all the advantages of ST, ADT is much less subject to the limitations of ST. when all this is taken into consideration it may be claimed that ADT meets to the highest degree the requirements of a modern diagnostic method which will evaluate burn depth and, in consequence, prove useful in the proper choice of treatment. It is concluded that IRI in its complex modern scope is of great use in the assessment of burn wound depth, especially in the face of the difficult and clinically crucial problem of making the appropriate choice of treatment.

Session VI: Fever screening, SARS / Avian Flu

THERMOGRAPHY FOR HUMAN TEMPERATURE SCREENING- INTERNATIONAL STANDARDS ORGANISATION PROJECT.

Ring EFJ.

Medical Imaging Research Group, University of Glamorgan, Pontypridd CF37 1DL UK

Following the SARS outbreak in S.E. Asia, and the use of thermal imaging used to screen travelling populations for fever, a full report has been published by the Singapore Standards Organisation (SPRING). This report highlights the essentials for quantitative use of thermal imaging, and defines some of the standards required to discriminate febrile subjects from normals, based on elevated facial temperatures.

An international committee has been called to investigate the possibility of defining critical standards for both suitable thermal imaging cameras, and their method of employment, particularly in airports and ports. The threat of an avian influenza pandemic has given urgency to this working group.

Many different aspects of the SPRING report have been examined to adapt, where necessary, to an international standard applied to infrared imaging employed for fever screening. The improved performance and reducing costs of thermal imagers, increases their potential for more widespread use. However, many low cost systems are non-radiometric, and are therefore unsuitable for sale to airport and public health authorities for temperature measurement. It is also recognised that cooled detector systems, while giving excellent thermal and spatial resolution, suffer from the limited number of hours that the cooling system can operate, before expensive replacement. Un-cooled camera systems are more suited for continuous use, but may need to be used in conjunction with an external temperature reference source.

A further problem is the limited amount of published data on facial temperatures in fever, and any relationship between temperatures measured at the cranial face, compared to body core temperature. Some recent studies have been conducted in this area in the light of the current problem of febrile screening in humans.

Instrumentation tests have also been highlighted. If a large number of thermal cameras are in use, as could be the case in a busy airport, it will be essential to have a regular quality assurance programme for every camera system, and for replacements to be substituted in the event of failure to perform to specification at any point in time.

Large numbers of thermograms will be recorded every hour in this application, raising issues of data storage and retrieval. Possible legal action arising from passengers who experience delays caused by failure to pass the fever test, mean that very critical measurements are essential. To date, data is needed to establish that the observable differences in facial temperatures between normal and febrile subjects are actually measurable with radiometric cameras of high and stable performance, and the results will be of statistical significance. The standard draft document ISO/TC121/SC3 – IEC TC/SC62D JWG8 will be available for comment by experts in due course, probably during late 2006.

Plassmann P. Ring EFJ. Jones CD. Quality Assurance of Thermal Imaging Systems in Medicine. Thermology Int. 16.1.10-15.2006

FLIR SYSTEMS EXPERIENCE WITH SARS DISEASE

Thomas A., Rutkowski P

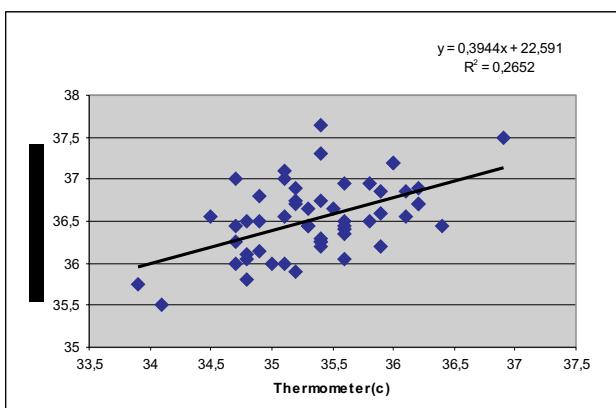
Warsaw , Poland

(No abstract received)

FACIAL TEMPERATURE MEASUREMENT IN CHILDREN

Żuber J., Ring E.F.J*, Jung A., Rutkowski P.

Pediatric Clinic, Military Academy of Medicine, Warsaw, Poland


*Medical Imaging Research Group, University of Glamorgan Pontypridd CF37 1DL UK

Recording of fever has traditionally been achieved by use of a clinical thermometer, either placed sublingually in the mouth, or by axillary placement under the armpit, to achieve as far as possible a closed cavity. Infrared thermal imaging offers rapid imaging of the human body surface. Recent SARS studies in South East Asia indicate that raised temperature over the face, particularly the forehead had been used in a screening operation to identify humans who may have a raised temperature, and therefore potential sufferers of the acute respiratory syndrome.

We investigated the facial temperatures of 50 children aged who were in, or outpatients at the Pediatric Clinic in the Military Academy of Medicine in Warsaw. There were 25 female and 25 male children, age range from 1 month to 17 years, mean age 8 yrs 1 month. 2 neonates were not included in the calculation.

Facial thermograms were recorded in a stable room temperature at 22°C using a FLIR 350 small thermal imager. The camera was mounted on a table top tripod and the subjects were seated on a chair facing the camera lens. Axilla temperatures were recorded with a standard clinical glass thermometer for a full 3 minutes. Date of birth was recorded in all subjects.

Results. The mean inner canthi temperatures of all subjects were averaged between left and right eye. The mean eye temperature recorded was 35.36°C, and the mean of the axilla or underarm temperature was 36.54°C, showing a mean temperature difference between the two measurements of 1.18°C. Two children were repeated after 2 hours, because they had raised eye temperatures, and had both been crying. This resulted in raised eye temperatures to over 37.0°C, although the axilla temperatures were normal. This could imply that a child subjected to thermal facial screening who had been crying would probably show a higher canthus temperature, close to 38°C. The results plotted in the figure show a poor correlation $R^2 = 0.265$ between the inner canthi and axilla temperatures in these children, none of which recorded as febrile during this short study.

A THERMAL IMAGE VALIDATION SYSTEM FOR MEDICAL INFRARED THERMOGRAPHY

Naeem M¹, Simpson R², Plassmann P³, Campbell P⁴, Howell KJ⁵, Agnew JA¹, Smith RE¹

Departments of ¹Medical Physics and ⁵Rheumatology, Royal Free Hospital, London, UK,

²National Physical Laboratory (NPL), Redingote, UK,

³School of Computing, University of Glamorgan, Wales.

⁴Electronic Engineering & Physics, University of Dundee, Scotland

In medicine, body temperature measurements are expected to have an absolute accuracy of 0.2 °C; however, manufacturers of thermal cameras quote an absolute accuracy of 0.2 °C near ambient temperatures. This is a problem for applications such as the detection, assessment and monitoring of localized scleroderma (LS) in children [1]. The changes caused by LS can potentially result in irreversible structural deformities, thus making it important to diagnose and stop development of the disease in its early stages.

Children with LS may be imaged over a period of years, placing particular demands on the reproducibility and reliability of the thermal imaging equipment. It is extremely important to be able to compare images, which have been taken at different times, accurately and to a common standard. This is even more important if images have been taken at different centers. To provide an acceptable level of measurement uncertainty the UK National Physical Laboratory (NPL) have developed and constructed a prototype 3-point blackbody references system to provide a cali-

bration check of thermal imagers across the temperature range of 25°C to 40°C.

The system is being evaluated at various centers across the UK, including the Royal Free Hospital. One experiment to determine the utility of the system is presented. Figure 1 shows an image (Flir SC500) of normal hands held horizontally immediately after cold challenge (water at 15°C for 1 minute). The three temperature standards can be seen running vertically between the hands. Figure 2 shows the mean re-warming curve of the subject's hands after the cold challenge and the three reference temperatures (temperatures extracted using Flir Thermacam Researcher software). The dip at 9 minutes was caused by the subject's hair partly occluding the image. It can be seen that, even for a relatively straight forward medical application such as cold challenge test, the presence of the three calibration temperatures validates the data and makes it transferable between sites.

The system has proven to be sufficiently accurate, reproducible and robust for medical use. It should reduce the uncertainty of medical temperature measurement using existing infrared imaging technology to approximately 0.6°C or better within the 25°C to 40°C range. By adopting this equipment (once available commercially) it is hoped that the system will provide an exceptional in-house calibration method to help improve the reliability of thermal imaging in medicine.

Reference

G Martini et al, "Juvenile-onset localized scleroderma activity detection by infrared thermography." *Rheumatology* 41:1178-1182.2002

Session VII: Animal studies

RESEARCH REVIEW OF THERMOLOGY IN VETERINARY MEDICINE

Purohit RC¹, Pascoe DD²

¹Department of Clinical Sciences, College of Veterinary Medicine;

²Department of Health and Human Performance; Auburn University, AL 36849

After 30 years of experience and use of thermology in veterinary medicine, we have chosen this opportunity to reflect upon the research questions that need further investigative studies. These studies must adhere to the highest standards of scientific inquiry, while meeting the scrutiny and requirements for publication in appropriate referred journals.

In addition to the already recognized, normal thermographic patterns in horses, we need to establish thermal patterns and dermatome patterns for the various animal species. This will be a challenge due to the potential use of pharmacological agents that can alter thermal patterns. The thermal variation among animal species, as well as within different breeds of animals, would provide significant contributions to the field of thermology. We have not developed suitable standards for various animals. Indoor thermal imaging standards for environmental control are well known, but we lack meaningful guidelines and standards for outdoor imaging. Skin thickness and hair coat in some animal species has been an extensively debated issue. There are some parts of the body where meaningful diagnostic thermography can be obtained, where there is a lack of hair coat, such as scrotal and perineal areas. In other cases hair clipping may be desirable to obtain diagnostic thermograms. Some animals are not calm and quite or easily controlled during clinical examination. This requires the use of sedatives and tranquilizers to make it easy to handle them. As we know, that same tranquilizer and sedative may alter thermal patterns and temperature gradients. Thus, we need to research appropriate sedatives and tranquilizers which can be used to calm the animal but does not have adverse effects

on diagnostic value of the thermograms. We know that exercise, heating, cooling, and the use of tranquilizers before and after thermal examination has been efficacious for diagnosis of various neurovascular and inflammatory conditions. What are the additional challenges of testing that we can use to enhance thermographic examination?

In conclusion, as advanced portable equipment is now becoming available for use in veterinary medicine, do we have a need for standardization of this equipment, and if so, what can we do to make it easier for the practicing veterinarian to use them?

THERMOGRAPHIC EVALUATION OF CERVICAL DERMATOME IN THE BULL

Pascoe CA ^{1,2}, Wolfe DF¹, Navarre CB¹, Abrams M¹, Pascoe DD², Foster EB², Purohit RC¹

¹Department of Clinical Sciences, Collage of Veterinary Medicine;

²Department of Health and Human Performance; Auburn University, AL 36849 U.S.A.

Neck injuries are not uncommon in some rodeo bulls. A bull was presented to the Large Animal Teaching Hospital with head carriage and slight head tilt after bucking. There were no changes in head tilt and carriage after 2 to 3 weeks post injury. The bull was in good physical condition other than the problem associated with the head carriage. Physical examination and history indicated some cervical neuropathy.

Thermographic evaluation was done using a Computerized Thermal Imaging Processor system. Facial views, along with right and left views of the neck and shoulder were obtained. Lower shoulder thermographic images left and right were similar in temperature and pattern. The left side cervical region (C1-C4) demonstrated warmer skin temperatures and a different thermal pattern when compared to the right cervical region.

Abnormal thermal patterns similar to cervical (neck) injury were observed. The bull had his head tilted more to the left and it seems that he was trying to relieve the pressure and pain presentation associated with the neck injury. In conclusion, both clinical findings and thermographic evaluation indicated neck and cervical area injury. Radiographic examination was postponed because bull weighed about 750 kg, obnoxious behavior, and it would require bull to be under general anesthesia. The bull was put on an anti-inflammatory drug and the owner was advised if condition persisted to return to the clinic in 90 days.

STANDARDIZATION FOR THE USE OF INFRARED THERMAL IMAGING IN VETERINARY MEDICINE

Purohit, Ram C., DVM, PhD, Professor Emeritus,

Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Alabama and Visiting Professor, Tuskegee University, College of Veterinary Medicine

In most mammalian species the body temperature is normally well controlled by its own metabolic state. The skin temperature is normally lower than that of internal tissues and depends not only on the metabolic state of the animal, but also various factors such as thermal conduction from heat sources within the body's vascular activity and just beneath the surface, heat losses due to evaporation, convection by air currents, or exchange of infrared radiation energy to the surroundings. Heat lost from the body by the exchanges of IR radiation with the surroundings is the basis of thermography. For this to occur, there must be a temperature

gradient. The following criteria should be a minimum requirement for obtaining diagnostic thermograms:

1. The environmental factors which interfere with the quality of thermography should be minimized. The room temperature should be maintained between 21 to 26°C. Slight variations in some cases may be acceptable, but room temperature should always be cooler than body temperature and free from air drafts.
2. Thermograms obtained outdoors under conditions of direct air drafts, sunlight, and extreme variations in temperatures provide unreliable thermograms in which thermal patterns can be altered. Such observations may provide false information.
3. When an animal is brought into a temperature controlled room it should be equilibrated at least 20 minutes or more, depending on the external temperature from which the animal was transported. Animals transported from extreme hot or cold environments may require up to 60 minutes of equilibration time.
4. Other factors should also be evaluated so as not to effect the quality of the thermograms obtained such as hair coat, exercise, sweating, body position and angle, body covering, systemic or topical medications, regional and local blocks, sedatives, tranquilizers and anesthetics, vasoactive drugs, skin lesions such as scars, surgically altered areas, etc.

The value of thermography is its extreme sensitivity to changes in heat, and its ability to detect changes. Therefore, it is important to have well documented, normal thermal patterns and gradients in a species prior to making any claims or detecting pathological conditions.

Session VIII: Final

STANDARDISATION OF THERMAL IMAGING- THE ANGLO POLISH REFERENCE DATABASE

Ring EFJ. Ammer K. Jung A. Murawski P. Wiecek B. Zuber J. Plassmann P Jones CD.

University of Glamorgan, Pontypridd CF37 1DL UK, Military Institute of Medicine, Warsaw, and Technical University of Lodz, Poland

Despite the availability of infrared thermal imaging for medical investigation for 45 years, there is a notable lack of reference data for normal subjects. Human body temperature is known to be self regulating (homeothermic) and to remain within narrow range of temperatures in a healthy subject. Inflammation, reduced blood perfusion and a number of defined clinical conditions can affect skin temperature to a significant degree. Nevertheless, to use thermal imaging to study body surface temperature, strict protocols must be followed; to obtain the thermal sensitivity required for measuring the changes in the limited thermal range. Thermal imaging equipment has increased thermal and spatial resolution, now attainable at lower cost than in the past. Even with the improved technical performance, there are a number of pitfalls to be avoided in order to obtain reproducible and reliable thermal data from medical thermography.

The Anglo Polish Project to investigate sources of error in order to develop a useful reference database of normal thermograms began in 2001 with funding from the British Council in Warsaw.

Over a three-year period eight stages for potential errors or artefacts have been identified.

1. Patient information and preparation for examination.
2. IR Camera systems and calibration.
3. Patient positioning & Image Capture.
4. Thermal image analysis.
5. Image storage.
6. Electronic image exchange (radiometric)
7. Image presentation.
8. Information on protocols and learning resources.

Details of patient preparation are more widely known and published, but a number of issues arise in the choice of thermal camera and its reliable performance. Calibration procedures are usually well undertaken by the manufacturer, but unless a regular maintenance contract is held, most cameras drift over time, and may produce significant variability in performance and temperature measurement. Comparability between cameras is essential in any multicentre study, especially in the collection of a reference database of thermograms. Even the use of a pillar stand rather than a tripod can improve reproducibility for image capture.

Many variables occur in image capture, due to the position of the patient and the distance from the camera. The ambient temperature control is also important before and during the recording of thermograms. We have developed image masks in the software for each of the 27 standard views selected for the database. This also allows the standard regions of interest to be pre-selected, with reduction in reproducibility errors, and faster measurement.

In response to the final issue, we are publishing books and papers on the outcome of our study, relating to protocols and standardisation of technique. A regular training course in the UK (University of Glamorgan) also includes these protocols and information.

Of special importance is the need for the operator to carry out regular checks on the camera, since we have shown significant differences between cameras even of the same model, and major offset calibration differences over time. Time from switch on is also important and many operators assume that the image is stable and accurate very quickly. Some of these issues can be found on the website www.medimaging.org

EUROPEAN CONGRESS OF THERMOLOGY 1974-2006: A HISTORICAL REVIEW

K. Ammer

Institut für Physikalische Medizin und Rehabilitation, Hanuschkrankenhaus, Vienna, Austria

The **aim of this presentation** is to give a historical survey on the European Congress of Thermology, which was organized for the very first time in Amsterdam in 1974 and occurred then in a cycle of 4 years until 1994. The interval between congresses was changed to 3 years after the 6th Congress in Bath 1994 and in this year 2006 the 10th congress takes place in Zakopane.

Methods: The presentations schedules of all the conferences, the lists of delegates, the books of abstracts, conference proceedings and photographs of congress participants were reviewed. Descriptive statistics were performed with respect to the origin of participants, number of participants and presentations per conference and topics of presentations.

Results: In total 9645 presentations have been given at the first 10 European Congresses of Thermology.

The congresses in Brescia in 2000 and this year in Zakopane had the smallest attendance, but the conferences in 1974, 1978, 1982 and 1986 attracted in each meeting 250 to 400 participants. The conference delegates came from 30 different countries and 5 continents (Europe, North- and South-America, Asia and Australia). A wide range of topics was discussed including thermal physiology, thermal physics, methods of temperature measurement, clinical application of thermal imaging for diagnosis and as an outcome measure in breast disease, urology, neurology, rheumatology, pediatrics, dermatology, angiology and dentistry. Thermotherapy, hyperthermia treatment and use of microwaves as a diagnostic tool were other issues. Prof Francis Ring seems to be the only one who attended all 10 conferences.

Conclusion: Similar as the scientific literature on thermology, the history of the European Congress of Thermology reflects the ups-and downs of this discipline.

News in Thermology

CALL FOR PAPERS - QRM 2007- 6th INTERNATIONAL CONFERENCE QUALITY RELIABILITY and MAINTENANCE

Aim

To promote the utilisation of the latest and most innovative contributions in the area of Quality, Reliability and effective Maintenance (QRM) practice.

Invitation to Prospective Authors and Scope of Papers

All papers are refereed and edited. The range of papers includes the following applications of QRM:

- Condition Monitoring Techniques, including vibration analysis, IR thermography, wear debris, acoustic emission, building services engineering.
- Industrial and business applications of QRM e.g., Quality systems and safety.
- Educational research, new courses and innovative techniques of instruction.
- Medical aspects of QRM including medical thermography.
- Digital Engineering and computer applications including artificial intelligence.
- Non-Destructive Testing condition monitoring techniques.

Instructions For Authors

Only completed papers must be submitted in word format on CD-Rom with registration to the Registrar:

Mrs Karen Thomas, Tyn-y-Coed, Glynhir Road
Pontardulais, Swansea, SA4 8PX, UK.

For Guidelines for authors see page 118.

DEADLINES: Papers can be submitted before August 1st

Completed papers to the Registrar by
20th September 2006.

Selected papers will be invited to contribute to International respected Technical and Scientific Journals including a special issue of QRM 2007 *Quality and Reliability*

Engineering International Journal:

www.interscience.wiley.com/journal/qualityandreliability

Contact Details

Conference organiser and editor of the proceedings:

Dr R A Thomas, QRM Ltd, Tyn-y-Coed, Glynhir Road, Pontardulais, Swansea, SA4 8PX, UK.

Tel/Fax: +44 (0)1792 885089

Email: rod@qrmconference.co.uk

Consultant to QRM: Prof GJ McNulty

Email: mcnulty@qrmconference.co.uk

Registrar: Mrs Karen Thomas, QRM Ltd, Tyn-y-Coed, Glynhir Road, Pontardulais, Swansea, SA4 8PX, UK.

Tel: +44 (0)1792 885089 Mobile number: 07854 003327

Email: karen@qrmconference.co.uk

St. Edmund Hall

Oxford is one of the world's most interesting historic cities and is especially beautiful in Spring. It has an old world charm and is surrounded by the magnificent Cotswold Hills.

St Edmund is the popular choice of delegates and authors following the general acclamation of those who attended the successful meetings in previous years. There is a social programme and accompanied people are catered for. The number of delegates is limited, the aim being to provide an atmosphere of intimacy and friendliness in delightful surroundings.

Delegate/Author Accommodation And Cost

The cost of £445 includes Conference, registration fee, hardbound copy of proceedings, overnight accommodation bed & breakfast at St Edmund Hall of Residence, Banquet on Thursday 22nd March, and meals. Extra nights at the college are chargeable at £49.00 per person per night including breakfast.

Rooms are standard but those wishing en suite facilities can be directed to local hotels. However, the cost is a flat rate and cannot be reduced to comply with this arrangement.

Accommodation is provided in college and the conference fee includes one night's stay. Accompanied spouse/partner are welcome, subsistence costs only, £190 including social programme, bed and breakfast and the banquet.

St Edmund as with other Oxford Colleges has no 'car parking facilities but Park and Ride is excellent. Buses from the railway station as well as the half hourly service from Heathrow Airport stop at the door of the college.

Presentations

All presentations should be on power point and submitted in advance of the conference. There will be an invitation to selected authors to carry out the role of conference chairs.

Sponsorship

All authors and delegates are responsible for the funding of their papers and travel.

QRM does not undertake sponsorship. QRM is an organisation made up of non-paid volunteer academics dedicated to promoting authors' research in publication form. Costs are kept low so that authors of limited means can attend and present their work. Exhibitors are encouraged to contact the registrar regarding availability of exhibition space.

Web Site

Details of the conference including accommodation, registration, directions to reach St Edmund can be found in the newly launched QRM website address:

www.qrmconference.co.uk

**Title: Guidelines for the preparation of manuscripts for
QRM conference proceedings**

Geoffrey Green Co-author, Peter Agbenyega Co-author and Lewis Kitson Co-author

Affiliation 1

City, County/State, Post Code, Country

Telephone

Telefax

E-mail

P Smith Co-author

Affiliation 2

City, County/State, Post Code, Country

Abstract

These instructions have been prepared to assist authors in the preparation of papers for reproduction in Conference proceedings to be provided to delegates. The instructions should be followed in all matters of format including section headings, capitalisation, punctuation, table and figure headings and their placement within the text. The conference proceedings will take the form of a hard-bound book of the papers. These guidelines are to ensure maximum uniformity of style and reproduction without further modifications - please try to follow them as closely as possible. The material that you supply will be used exactly as it is presented. The attached pages should serve as a model. Your paper should not exceed 4 pages in length, including all figures.

1. Introduction

In preparing a manuscript, authors are solely responsible for the quality and appearance of the final product. Passive-voice manuscript construction is preferable ('the signal was recorded'), rather than active ('we recorded the signal'). Please follow these guidelines carefully and accurately. If any questions or special problems arise, feel free to contact Coxmoor Publishing Company e-mail: qrm@coxmoor.com

2. Specific instructions

2.1 Text

Text should be typed at single spacing in Times New Roman or similar typeface, 12 point and fully justified. Plain white A4 paper should be used with margins of 30 mm on all sides. Typing should be on one side of the paper only and page numbers should be included at the bottom of the page on the right-hand side. The number on the first page should not be shown.

2.2 Format

An introductory paragraph should be given after a first-level heading, followed by numbered subheadings. First-level headings should be in 14 point bold typeface; second-level headings 12 point bold italic; and third-level in 12 point italic. All headings should be left-justified.

2.2.1 Title and Author

The title should emphasise the objective of the paper. Avoid excessive length and use secondary titles only when necessary. The title should be in 14 point bold, sentence case (only the first letter of the first word capitalised except for proper nouns), centred on the width of the opening page and spaced 30 mm from the top of the page. Names of authors should be centred on the third line below the title. The name(s) should be shown as first name, middle initial, and last name or first initial, middle name, and last name, as preferred. Only the first letter of names should be capitalised. If there is only one author, his/her organisation and address should be single spaced below the name. If there is more than one author, separate the authors by organisation and address. Please include telephone, telefax and e-mail address for lead/presenting author only.

2.2.2 Abstract

The abstract begins on the third line below the authors' names and addresses, as described above. The abstract should be typed in the same manner as the text. The abstract should clearly state the objective of the paper and should present salient conclusions in not more than 70 words.

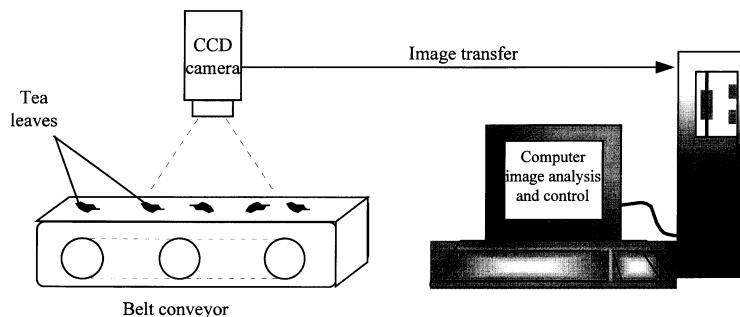
2.2.3 Body

The body of the paper should begin on the third line below the last line of the abstract. The body of the paper should open with an introduction, which is a brief assessment of prior work by others, and an explanation of how the paper contributes to the field. The introduction should briefly describe the extent of the study and techniques employed. The introduction part of the body should not contain information on results obtained.

After the introduction, the main body of the paper is presented. It is here that the primary information contained in the paper is located. The author is free to select the format best suited to the paper. Sections may cover such topics as previous work, experimental methods, theory, results, discussion, etc. The author should present material succinctly, eliminating details readily available from other sources.

2.3 Acronyms and abbreviations

Terms to be abbreviated should be given in full the first time they appear, followed by the acronym or abbreviation in parentheses. Subsequently, the acronym is used. Acronyms should be used prudently; an excessive number should be avoided.


2.4 Mathematics, equations, formulae and symbols

Please type as much of the mathematical material as possible, with particular care in spacing and alignment, vertical as well as horizontal. Displayed equations or displayed chemical formulae (ie, those on their own line) should be in italics and centred with one line of space above and below. Break multi-line equations before a relation or operation sign, and align the sign to the right of the equals sign in the first line. Leave one space on each side of a relation or operation sign. Equation numbers should be typed in parentheses at the right margin using Arabic numbers. Symbols appearing in the text should be in italics.

$$r(k) = r_0 \exp(-2R_q^2 k^2) \quad (1)$$

2.5 Figures and graphs

Figures should be numbered and captioned, and should be included at appropriate positions within the text. They may be grouped together on separate pages within the text if desired, but please avoid large blank areas. Leave one line gap above and below figures and tables and do not put text to the side of them. Captions should be centred on the page. Lettering on line drawings should be large enough to be clearly legible.

Figure 1. Brief main caption. Essential details and comments may be given in this form after the caption. Capitalise only the first word of the caption and proper nouns contained within it

2.6 Tables

Tables must be cited in the text and should be included as close to the point of reference as possible, but tables should not continue from one page to the next unless a table begins at the beginning of a page (ie, a multi-page table). The table caption, in bold, should always be centred with the table number above the table. Arabic numbers should be used for table numbers.

Table 1. Table example

Item	Specifications
Table caption defined	The table caption, in bold, should always be centred with the table number above the table. Arabic numbers should be used for table numbers. Do not end the table caption with a full stop.
Table contents	Preferred type font is Times New Roman 11 point. Line spacing should be single space with one additional line of space between paragraphs.

3. Conclusions

Following the body of the report the author should present, in narrative format, conclusions drawn from the paper. The conclusions should be based on the discussion in the body of the paper. In addition, it may be valuable to demonstrate the value of the work to the profession. The conclusions should be written for the general reader. Specific detailed information is better confined to the body of the paper.

Acknowledgements

Acknowledgements should be typed as text and placed before the reference listing.

References and footnotes

References should be written in the order in which they appear in the text in the following format:

1. P Jones and J Bloggs Udma, 'QRM in the 21st Century', IMEE Proceedings-F, Vol 77, No 1, pp 261-285, March 1989.

The reference point in the text should be formatted thus ⁽¹⁾.

No footnotes will be shown at the bottom of pages.

Submission of papers

Please send a Word version of the paper to:

Mrs Karen Thomas
Registrar QRM Ltd
Tyn-y-Coed
Glynhir Road
Pontardulais
Swansea
SA4 8PX, UK

E-mail: karen@qrmconference.co.uk

Deadline: Completed papers must be at the Registrar no later than 20th September 2006

Protokoll der Generalversammlung der Österreichischen Gesellschaft für Thermologie am 10.05.2006 in Wien

T. Schartelmüller

Sekretär der Österreichischen Gesellschaft für Thermologie, Wien

Eröffnung um 18:30 Uhr, wegen mangelnder Beschlussfähigkeit wird auf 19:30 Uhr vertagt

Neuerliche Eröffnung um 19:30 Uhr und Feststellung der Beschlussfähigkeit. Es folgt der Rücktritt des Vorstandes.

Entsprechend der Tagesordnung erfolgen:

1. Bericht des Präsidenten
2. Bericht des Sekretärs
3. Bericht des Kassiers
4. Der Mitgliedsbeitrag bleibt unverändert: € 40,-- jährlich (einstimmig angenommen).
5. Bericht des Kassenprüfers:

In Vertretung für Dr.P.Melnizky vorgelegt durch den Präsidenten, Prof.DDr.K.Ammer. Die Buchführung wird für ordnungsgemäß empfunden, dem Antrag auf Entlastung des Kassiers wird zugestimmt (bis auf 1 Stimmenthaltung einstimmig angenommen)

6. Neuwahl des Vorstandes: der Vorstand wird in selber Besetzung wie 2004 wiedergewählt (einstimmig angenommen):

Präsident	Prof.DDr.K.Ammer,
Vizepräsidenten	Prof Dr.O.Rathkolb
	Prim.Dr.T.Maca,
Kassier	Prim.Dr.H.Mayr
Sekretär	Prim.Dr.T.Schartelmüller
Rechnungsprüfer	Dr.P. Melnizky
	Dr. Brigitte Engelbert

7. Allfälliges:

- a. Die Finanzierung der kommenden Ausgabe der "Thermology international" ist noch nicht gesichert, bei mangelnder Unterstützung von auswärts soll die Differenz aus dem Vereinsvermögen beglichen werden
- b. Bei weiterhin stagnierendem Interesse wird die Auflösung des Vereines bei der nächsten Generalversammlung erwogen.

Schluss der Generalversammlung um 20:05 Uhr.

Meetings

August 30-September 3, 2006

IEEE 2006 International Conference of the Engineering in Medicine and Biology Society
"Engineering Revolution In BioMedicine" New York City
Conference Site and Hotel: Marriott at Times Square, New York City, New York, USA

Information:

Jodi L. Strock, EMBS Executive Office

Email: emb-conferences@ieee.org

Tel: 732 981-3451

Fax: 732 465-6435

Mailing address: IEEE EMBS Conferences

Attn: EMBC 2006

445 Hoes Lane Piscataway NJ 08854

Web site: <http://embc2006.njit.edu>

15th –17th September 2006

10th European Congress of Thermology combined with
9th Annual Congress of the Polish Association of Thermology
and 19th Thermological Symposium of the Austrian Society
of Thermology in Zakopane, Poland

Venue: Hotel

Registration Fee 300 Euros (based on room share)

Includes full board at conference hotel, and social events
Extra night (Sunday – breakfast Monday 18 Sept). 50 Euros
Transport (groups of 5 and over) from Krakow Int. Airport
– 20 Euros return

Accompanying persons 250 Euros

Registration payment after August 1st 2006 only on site

20-23 September 2006

ISMP 2006- V Symposium On Medical Physics
III International Symposium On Medical Physics
in Ustron; Poland

MAIN TOPICS

Bioelectromagnetism

Biosignal Processing

Bioengineering

Biophysical and Biochemical Measurement

Medical Imaging

Radioprotection and Radiotherapy

Physical Therapy

Modelling and Simulations

Conference Secretariat

V Symposium on Medical Physics 2006.

Department of Medical Physics

A. Chelkowski Institute of Physics.

University of Silesia .Uniwersytecka 4,
40-007 Katowice.Poland.

e-mail: ismp@us.edu.pl

Web site: www.ismp.us.edu.pl

2007

22nd - 23rd March 2007

6th INTERNATIONAL CONFERENCE QUALITY
RELIABILITY and MAINTENANCE in Oxford

Information:

Dr R A Thomas, QRM Ltd, Tyn-y-Coed, Glynhir Road,
Pontardulais, Swansea, SA4 8PX, UK.

Tel/Fax: +44 (0)1792 885089

Email: rod@qrmconference.co.uk

Web site: www.qrmconference.co.uk

June 8-10, 2007

33rd AAT Congress and 7th International Congress of
Thermology in Auburn, Alabama, USA

Information:

Prof Dr. David Pascoe

Auburn University

Email: pascodd@auburn.edu

27th to 29th of June, 2007

15 International Conference on Thermal Engineering and
Thermogrammetry (THERMO) in the House of
Technology Budapest, V., Kossuth Lajos tér 6-8.

Information:

Application Forms and abstracts/papers should be sent to:
Dr. Imre BENKÖ,

MATE Secretariat,House of Technology,

III. 318.H 1372 Budapest,POB. 451., Hungary

Fax: +361-353-1406,

Phone: +361-332-9571., E-mail: mate@mtesz.hu

www.mate.mtesz.hu/eng/Pages/2007/Thermo2007/index.php

For any further information and personal inquiries please
contact the following address:

Dr. Imre BENKO, H 1112 Budapest, Cirmos u. 1, 6/38,
Hungary

Phone/fax: +361 310-0999.E-mail: ibenko@freestart.hu

Dr. Kurt Ammer
Österreichische Gesellschaft für Thermologie
Hernalser Hauptstr.209/14
A-1170 Wien
Österreich

This journal is a combined publication of the Austrian Society of Thermology and the European Association of Thermology (EAT). It serves as the official publication organ of the American Academy of Thermology, the German Society of Thermology, the UK Thermography Association (Thermology Group) and the Austrian Society of Thermology. An advisory board is drawn from a panel of international experts in the field. The publications are peer-reviewed.

ISSN -1560-604X
Thermology
international

Please begin my subscription to
THERMOLOGY INTERNATIONAL

Name

Address

City

State

Zip

Signature

Date

I am a registered member of the
 Hungarian Society of Thermology
 UK Thermography Association
 Italian Association of Thermology
 Polish Society of Thermology
 German Society of Thermography
 Romanian Society of Thermography

For members of the societies mentioned above the subscription rate for 4 issues/year is 32.-€ mailing costs included. All other subscribers have to pay 38.- € + 18 € for mailing outside Austria, in total 56 € (US \$ 68.-)

Payment should be sent (without any charges for the European Association of Thermology) to the following bank account:Bank Austria-Creditanstalt, Vienna, Austria, IBAN=AT62 1200 0009 6502 3054 / BIC=BKAUATWW

international

Dr. Kurt Ammer
Österreichische Gesellschaft für Thermologie
Hernalser Hauptstr.209/14
A-1170 Wien
Österreich

Diese Zeitschrift ist eine gemeinsame Publikation der Österreichischen Gesellschaft für Thermologie und der Europäischen Assoziation für Thermologie (EAT)

Sie dient als offizielles Publikationsorgan der Amerikanischen Akademie für Thermologie, der Deutschen Gesellschaft für Thermologie, der Britischen Thermographie Assoziation (Thermologie Gruppe) und der Österreichischen Gesellschaft für Thermologie.

Hochangesehene Thermologen sind Mitglieder des wissenschaftlichen Beirates dieses vidierten Fachblattes.

ISSN -1560-604X
Thermology
international

Ich bestelle ein Abonnement der
THERMOLOGY INTERNATIONAL

Name

Adresse

Ort

Staat

PLZ

Unterschrift

Datum

Ich bin Mitglied der
 Ungarischen Gesellschaft für Thermologie
 UK Thermography Association
 Italian Association of Thermology
 Polish Society of Thermology
 Deutschen Gesellschaft für Thermographie
 Rumänischen Gesellschaft für Thermographie

Für Mitglieder der oben erwähnten Gesellschaften beträgt der Abonnementpreis für 4 Ausgaben inklusive Versandkosten 32.-€. Für alle anderen beträgt der Preis 38.- € + 18 € Versandkosten außerhalb Österreichs, somit einen Gesamtpreis von 56.- €.

Die Bezahlung wird spesenfrei für den Empfänger auf das folgende Bankkonto der Europäischen Assoziation für Thermologie erbeten:

Bank Austria-Creditanstalt, Wien, Österreich,
Bankleitzahl: 12000, Kontonummer: 965023054
IBAN=AT62 1200 0009 6502 3054 / BIC=BKAUATWW