

ISSN-1560-604X  
Thermology international

Thermology international

# International

**Volume 11 (2001)**  
**Number 3 (August)**

formerly European Journal of Thermology

Published by the

Ludwig Boltzmann Research Institute  
for Physical Diagnostics  
Austrian Society of Thermology

# **THERMOLOGY INTERNATIONAL**

**(formerly EUROPEAN JOURNAL OF THERMOLOGY)**

**Volume 11 (2001)**

**Number 3 (August)**

**Published by the**

**Ludwig Boltzmann Research Institute for Physical Diagnostics  
and the Austrian Society of Thermology**

***Editor in Chief:***

**K. Ammer, Wien**

***Section Editor: B. Jones, Pontybridd***

## **Editorial Board**

|                                 |                      |                          |
|---------------------------------|----------------------|--------------------------|
| M.Anbar, Buffalo                | I.Fujimasa, Tokyo    | A.Jung, Warsaw           |
| I.Benkö, Budapest               | S.Govindan, Wheeling | Y.S.Kim, Seoul           |
| R.P.Clark, London               | J.Graber, Bozen      | O.Rathkolb, Wien         |
| L.de Thibault de Boesinghe,Gent | J.R.Harding, Newport | E.F.J.Ring, Bath         |
| A.DiCarlo, Rom                  | K.Mabuchi, Tokyo     | D.Rusch, Bad Nauheim     |
| J.-M. Engel, Bad Liebenwerda    | H.Mayr, Wien         | H.Tauchmannova, Piestany |

**Organ of the American Academy of Thermology**

**Organ of the European Association of Thermology**

**Organ der Deutschen Gesellschaft für Thermologie**

**Organ of the Polish Society of Thermology**

**Organ der Österreichischen Gesellschaft für Thermologie**

**Organ of the UK Thermography Association (Thermology Group)**

## Instruktionen für Autoren

Manuskripte müssen dem Schriftleiter zugesandt werden und dürfen noch nicht veröffentlicht sein.

Die Manuskripte von Übersichts- und Originalarbeiten werden 2 unabhängigen Begutachtern vorgelegt, die über Annahme oder Annahme nach Änderung des Manuskriptes entscheiden.

Mit der Annahme der Arbeit gehen alle Rechte an den Herausgeber über.

*Verantwortlicher Schriftleiter:*

DDr. Kurt Ammer

Ludwig Boltzmann Forschungsstelle  
für Physikalische Diagnostik,  
Hauschkrankenhaus, Heinrich Collinstraße 30  
A-1140 Wien, Österreich,  
Tel: (43 1) 914-97-01 Fax: (43 1) 914-92-64  
e-mail: KAmmer1950@aol.com

*Publiziert werden:*

Editorials

Übersichten

Originalien

Berichte über interessante Publikationen aus dem Gebiet Thermologie

Mitteilungen der Amerikanischen Akademie für Thermologie; der Britischen Assoziation für Thermographie (Thermologie Gruppe);

der Deutschen Gesellschaft für Thermologie;

der Europäischen Assoziation für Thermologie; der Polnischen Gewellschaft für Thermologie und der Österreichischen Gesellschaft für Thermologie

Veranstaltungshinweise

Manuskripte sollen mit den Empfehlungen des Internationalen Komitees der Herausgeber von Medizinischen Zeitschriften (ICMJE) (1,2) im Einklang stehen. Es ist auf eine klare Gliederung der Beiträge vorzugsweise in der Form: Einleitung, Methode, Ergebnisse, Diskussion, Danksagung, Literatur, zu achten. Jeder Arbeit ist eine Kurzfassung in Deutsch und Englisch vorzustellen. Bis zu 5 Schlüsselwörter sollen den Inhalt der Arbeit zusätzlich charakterisieren.

Tabellen und Abbildungen sollen gesondert dem Manuskript beigelegt werden. Legenden werden auf einem Extrablatt beigegeben.

Die Einreichung der Arbeit auf Diskette unter Angabe des verwendeten Systems ist möglich und erwünscht. Ein Ausdruck des Textes ist der Diskette beizulegen.

Literaturangaben sind auf einem gesonderten Blatt erbeten und sind in der Reihenfolge aufzulisten, in

der sie im Text genannt werden. Die Literaturzitate werden durchnummiert; im Text werden nur die entsprechenden Nummern angegeben. Die nachstehende Beispiele basieren auf dem Format der Amerikanischen Nationalbibliothek für Medizin im Index Medicus. (Eine komplette Liste von Beispielen bei 1).

a.) Zeitschriftenzitate

Namen der Verfasser, Vorname(n) (abgekürzt) (die ersten 6 Autoren müssen angeführt werden, mehr als 6 Autoren werden mit "et al" angegeben), vollständiger Titel der Arbeit, abgekürzter Titel der Zeitschrift, Jahr, Band, Seitenzahlen.

Luther B, Kreyer I, Dobi I. Die Anus-praeter-Thermographie als Methode zur Früherkennung vaskulärer Komplikationen nach Dünndarmtransplantation. ThermoMed 1990; 6: 115-17.

b.) Buchzitate

Name der Verfasser, Vorname(n) (abgekürzt), vollständiger Titel der Arbeit, Herausgeber, Titel des Buches, Ort, Verlag, Jahr, Seitenzahlen.

Gautherie M, Haehnel P, Walter JM, Keith L. Long-Term assessment of Breast Cancer Risk by Liquid Crystal Thermal Imaging. In: Gautherie M, Albert E; editors. Biomedical Thermology. New York: Alan R. Liss Publ; 1982. 279-301.

Von Text und Abbildungen werden den Autoren Andrucke zur Korrektur zugesandt. Jeder Autor erhält 20 Sonderdrucke seiner Arbeit kostenlos.

"Thermology international" erscheint 4 mal jährlich. Ein Jahresabonnement kostet ATS 510,- ein Einzelheft ATS 150,- plus Porto (ATS 60,- pro Heft außerhalb Österreichs).

Für Mitglieder der Österreichischen Gesellschaft für Thermologie, der Deutschen Gesellschaft für Thermologie und der Amerikanischen Akademie für Thermologie ist die Zeitschrift im Mitgliedsbeitrag inkludiert.

**Literatur**

(1) International Committee of Medical Journal Editors. Uniform requirements for manuscripts submitted to biomedical journals. Can. Med Assoc J 1997; 156: 270-7.

(2) International Committee of Medical Journal Editors. Additional statements from the International Committee of Medical Journal Editors. Can. Med Assoc J 1997; 156: 571-4.

Uhlen-Verlag,  
Moßbacherg. 29, A-1 140 Wien  
Thermology international  
ISSN-1056-604X

## **Inhaltsverzeichnis (CONTENTS)**

### **Übersicht (REVIEW)**

|                                                                                                                                        |     |
|----------------------------------------------------------------------------------------------------------------------------------------|-----|
| <i>H.Hooshmandi, M.Hashmi, E.M.Phillips</i><br>Infrared Thermal Imaging as a Tool in Pain Mangement-<br>An 11 Year study, Part II..... | 117 |
| (Infrarotthermographie als Hilfsmittel im Schmerzmanagement- eine 11 Jahres-Studie, 2.Teil)                                            |     |

### **Originalien (ORIGINAL ARTICLES)**

|                                                                                                                               |     |
|-------------------------------------------------------------------------------------------------------------------------------|-----|
| <i>Ingrid Hiler, Sylvia Frühauf, W.Andrä, R.Hiergeist, R.Hergt, W.A.Kaiser</i><br>Magnetic Heating As A Therapeutic Tool..... | 130 |
| (Magnetisch induzierte Wärme als Therapiemittel)                                                                              |     |

### **Berichte (REPORTS)**

|                                                                 |     |
|-----------------------------------------------------------------|-----|
| Instruktionen für Autoren.....                                  | 114 |
| Instructions for authors.....                                   | 116 |
| Abstracts of the 29th AATMeeting in Auburn.....                 | 137 |
| General Assembly of the European Association of Thermology..... | 147 |

### **News in Thermology (THERMOLOGISCHE NACHRICHTEN)**

|                                                                              |     |
|------------------------------------------------------------------------------|-----|
| Course& Workshop on Medical Thermography at the University of Glamorgan..... | 150 |
| 4th Congress of the Polish Society of Thermology.....                        | 151 |
| Bergmann Award 2001.....                                                     | 151 |

### **Veranstaltungen (MEETINGS)**

|                             |     |
|-----------------------------|-----|
| Veranstaltungskalender..... | 152 |
|-----------------------------|-----|

## Instructions for authors

Manuscripts should be mailed to the editor and should not be submitted elsewhere. All manuscripts (i.e. reviews and original articles) will be read by two independent reviewers. With the acceptance of the paper all copyrights are transferred to the publisher.

Editor in Chief

Dr. Kurt Ammer

Ludwig Boltzmann Forschungsstelle für Physikalische Diagnostik, Hanuschkrankenhaus Heinrich Collinstraße 30 A-1140 Wien, Österreich, Phone: (43 1) 914-97-01 Fax:(43 1) 914-92-64 Personal e-mail:KAmmer1950@aol.com

We publish

Editorials

Reviews

Original articles

Reports on thermological publications of interest

Announcements from

The American Academy of Thermology,

The Austrian Society of Thermology

The German Society of Thermology

The Polish Society of Thermology

The UK Thermography Association

The European Association of Thermology

Information and abstracts

from conferences and symposia

Manuscripts should follow the recommendations of the International Committee of Medical Journal editors (ICMJE) (1) and should be organized as follows: Introduction, methods, results, discussion, acknowledgements, references. A short abstract in English and, if possible, German (translation will be offered) should head the manuscript. Following the abstract, up to 5 key-words should characterize the paper.

Tables, Figures and Legends for illustrations should appear each on an extra sheet of paper.

Submission on computer discs with name of the used system is encouraged. A print of the disc content should be enclosed.

References should be numbered consecutively in the order in which they are first mentioned in the text. Identify references in text, tables, and legends by Arabic numerals in parentheses. Use the style of the examples below which are based on the formats

used by the US National Library of Medicine in Index Medicus (complete list of examples on (1)).

**Standard journal article** (List the first six authors followed by "et al" if the number exceeds 6).

Luther B, Kreyer I, Dobi I. Die Anus-praeter-Thermographie als Methode zur Früherkennung vaskulärer Komplikationen nach Dünndarm-transplantation. ThermoMed 1990; 6: 115-7.

## Chapter in a book

Gautherie M, Haehnel P, Walter JM, Keith L. Long-Term assessment of Breast Cancer Risk by Liquid Crystal Thermal Imaging. In: Gautherie M, Albert E, editors. Biomedical Thermology. New York Alan R.Liss Publ; 1982. p. 279-301.

Before publication proof prints will be mailed to the main author for corrections. Each author will receive 20 free copies of the reprint.

The journal "Thermology international" (formerly "European Journal of Thermology") is published four times/year. Annual Subscription rate is ATS 510.-, a single copy costs ATS 150.- plus mailing costs (ATS 60.-/copy; outside Austria).

The journal is supplied free of charge to members of the American Academy of Thermology, the Austrian Society of Thermology and also to members of the German Society of Thermology.

## References:

(1) International Committee of Medical Journal Editors. Uniform requirements for manuscripts submitted to biomedical journals. Can. Med Assoc J 1997;156:270-7.

(2) International Committee of Medical Journal Editors. Additional statements from the International Committee of Medical Journal Editors. Can. Med Assoc J 1997;156: 571-4.

Uhlen-Verlag,  
Moßbacherg.29, A-1140 Wien  
Thermology international  
ISSN-1560-604X

# Infrared Thermal Imaging As A Tool In Pain Management - An 11 Year Study Part II: Clinical Applications

**Hooshang Hooshmand, Masood Hashmi, Eric M. Phillips**

Neurological Associates Pain Management Center, Vero Beach, Florida, USA

## Summary

ITI is a neurophysiological tool providing diagnostic and therapeutic information in patients suffering from neuropathic pain with neurovascular involvement. This information cannot be obtained from anatomical tests (e.g.,MRI or CT).

Bales Scientific Thermal Processor (Bales Scientific, Walnut Creek, CA)(762 patients) and Agema Cameras (Flir)(2,503 patients) were used for this study of 3,265 successive patients. A review of our experience with Infrared thermal imaging (ITI) and its role in pain management was conducted, and compared with the recent medical literature. The study was limited to the role of ITI in the management of complex chronic pain syndrome.

ITI is helpful in proper localization of hyperthermic foci due to iatrogenic permanent damage to thermo-sensory nerves, such as seen after repetitive sympathetic ganglion blocks; or due to sympathectomy or prolotherapy. As the result, the physician stays out of harms way by not causing further permanent damage. In addition, ITI identifies the spread of CRPS, pointing to the need for treatment of such spread. It helps differentiate migraine from neuropathic occipital neuralgia - two diseases requiring to contrasting treatments.

ITI has not been proven useful in evaluation of cervical and lumbar radiculopathies, stroke, and transient ischemic attacks. ITI can differentiate cervicogenic headaches from migraine - each requiring opposite forms of treatment. ITI is a useful prognosticator for diabetic foot pain, sparing some patients from amputation. ITI can spare patients from unnecessary carpal tunnel, spinal disc, and TMJ surgeries by identifying the original source of neuropathic pain. If ITI shows diffuse hyperthermia in the extremity already treated with repeated sympathetic ganglion blocks (virtual sympathectomy), such patients should be spared from undergoing further ganglion blocks. The hypothermic extremity after sympathectomy proves the futility of this and other ablative treatments such as chemical sympathectomy, or neurolytic blocks.

**Key Words** - CRPS, Headache, Sympathectomy ,Thermography.

## Infrarathermographie als Hilfsmittel im Schmerzmanagement-in 11 Jahres Studie, 2.Teil:Der klinische Einsatz der Infarrotthermographie

Die Infrarotthermographie liefert als neurophysiologische Untersuchungsmethode diagnostische und therapeutische Informationen über Patienten, die an neuropathischem Schmerz mit neurovaskulärer Begleitsymptomatik leiden. Diese Information kann durch keinen anatomischen Test (z.B.NMRI, Ct) zur Verfügung gestellt werden.

Ein Bales Scientific Thermal Processor (Bales Scientific, Walnut Creek, CA)(762 Patienten) und Agema (Flir)Kameras (2,503 Patienten) wurden in dieser Untersuchung an 3265 aufeinander folgenden Patienten verwendet. Ein Überblick über unsere Erfahrungen mit der Infrarotthermographie wird gegeben und der rezenten medizinischen Literatur zu diesem Thema gegenüber gestellt. Die Untersuchung wurde auf die Bedeutung der Infrarotthermographie im Management von Schmerzpatienten beschränkt.Die Infrarotthermographie hilft in der Entdeckung hyperthermer Zonen, die durch wiederholte iatrogene Schädigung der thermosensiblen Nervenfasern entstehen und die bei wiederholten Sympathikusblockaden, Sympathektomie oder therapeutischer Gewebe-Sklerosierung vorkommen.Durch solche Veränderungen

gewarnt, kann der Arzt weitere Schädigungen vereiden. Die Infrarotthermographie kann die weitere Ausbreitung Schädigungen vermeiden. Die Infrarotthermographie kann die weitere Ausbreitung eines komplexen chronischen Schmerzsyndroms (CRPS) anzeigen und auf eine notwendige Therapie dieser Ausbreitung hinweisen. Die Infrarot-Technik kann auch für die Differenzierung zwischen Migräne und neuropathischer Okzipitalneuralgie hilfreich sein, zumal diese Krankheitsbilder völlig unterschiedliche Behandlungen benötigen.

Die Infrarotthermographie ist wenig brauchbar in der Beurteilung von zervikalen oder lumbalen Radikulopathien, von Schlaganfall oder transitorischen ischämischen Attacken. Man kann aber mit ihrer Hilfe cervikogenen Kopschmerz von der Migräne unterscheiden. Die Infrarotthermographie hat prognostische Bedeutung bei Fusschmerzen von Diabetikern, und hat so manchen Patienten eine Amputation erspart. Ebenso können auf Grund von Infrarotbildern nicht notwendige Operationen wegen eines Karpaltunnelsyndroms, einer Bandscheibe oder chirurgische Eingriffe im Kieferbereich vermieden werden, da die Ursache eine neuropathischen Schmerzgeschehens eindeutig gefunden werden kann. Wenn die Infrarotthermographie eine diffuse Hyperthermie bei Patienten nach wiederholten Sympathikusblockaden zeigt, sind weitere Blockaden nicht mehr angezeigt. Eine hypotherme Extremität nach Sympathektomie beweist die Entbehrlichkeit dieser und anderer destruierender Behandlungen wie z.B. die chemische Sympathektomie oder Nervenblockaden.

**Schlüsselwörter** - CRPS, Kopfschmerze, Sympathektomie ,Thermographie

## The Role Of ITI In Selection of Nerve Blocks

ITI provides indispensable information which guides the physician to stay out of harms way, and to prevent iatrogenic trauma. One example is the role of ITI in selection of proper nerve block modality. Traditionally, the nerve block of choice in CRPS has been stellate ganglion nerve blocks. After more than a dozen stellate, or lumbar ganglion nerve blocks, the repetitive needle insertion traumatizes the ganglion enough to result in permanent hyperthermia in the extremity ("Virtual Sympathectomy") (1). In such patients, ITI of the extremity shows permanent hyperthermia in face of no pain relief. Kozin, in his review of 500 patients treated with sympathetic ganglion blocks, reported "the majority of patients have transient or no significant pain relief" (2). Another meta-analysis of retrospective and prospective randomized controlled trials of 1144 patients revealed the local anaesthetic sympathetic blockade was as ineffective as placebo in treatment of CRPS(3).

**Outcome:** ITI identified the "virtual sympathectomy" phenomenon, and spared the patients from further damage by canceling the procedure (1) (Table 1). Repetitive ganglion nerve blocks are routinely applied for diagnosis (4) and treatment of neuropathic pain such as complex regional pain syndrome (CRPS). However, Hogan et al (5), have reported only 27% of stellate ganglion block achieved the goal of ipsilateral warming to exceed the contralateral skin temperature. This 27% success is not worth the traumatic complications of ganglion blo-

ckade. Moreover, they noted (5) that cervical paratracheal blocks frequently failed to produce evidence of sympathetic interruption to the arm. The sympathetic ganglion blockade done in peripheral occlusive vascular disease or CRPS maybe potentially dangerous and harmful (1,2,3,6).

## Sympathectomy

The sympathectomy results in partial hyperthermia, with compensatory contralateral extremity hypothermia, this result in the spread of pain in the contralateral extremity. Out of desperation, sympathectomy has been applied for treatment of causalgia since 1916 (7). The literature review of sympathectomy literature for treatment of CRPS shows high rates of failure. Welch et al (8) showed 13% successful results of sympathectomy in 8.4 years of long term follow-up. In contrast, Jebara and Saade, on their short -term sympathectomy follow-up of 26-60 days among teenage soldiers showed very good results (9). Obviously, ablation surgery provides temporary palliative relief. The rest of the literature review shows random follow-ups and results (10). The high percentage group has been wartime soldiers which have been diagnosed early , undergone surgery within a few days , and sent home to be lost to follow-up (10-31). Realizing that children and teenagers (such as soldiers), show a strong plasticity and healing power as compared to adults (32,33), and realizing that early diagnosis and treatment is more successful (34,35),

Table 1.

The influence of treatment on CRPS stages during 2 years or longer follow-up in 824 patients. Amputation or sympathectomy deteriorate the disease from stage I to stage III.

| Characteristics of treatment<br>(824 patients) | Stage I ****<br>number of patients | Stage II<br>number of patients | Stage III<br>number of patients |
|------------------------------------------------|------------------------------------|--------------------------------|---------------------------------|
| History of Amputation *<br>11 Patients (1.3%)  | 0 (0%)                             | 2 (19%)                        | 9 (81%)<br>(P=0.025)            |
| Chemical Sympathectomy<br>13 Patients (1.5%)   | 0 (0%)                             | 2 (15.4%)                      | 11(84.6%)                       |
| Surgical Sympathectomy<br>22 Patients (2.6%)   | 0 (0%)                             | 3 (13.6%)                      | 19 (86.4%)                      |
| Surgical Treatment **<br>295 Patients (36%)    | 24 (8%)                            | 106(36%)                       | 165 (56%)<br>(P<0.001)          |

(\*) Many patients had more than one treatment modality which change the total percentage.

(\*\*) Sympathectomy; rotator cuff; thoracic outlet syndrome; compression neuropathy; exploration; etc.

(\*\*\*) Stage I = Dysfunction; Stage II= Dystrophy; Stage III= Atrophy.

(\*\*\*\*) According to the type of treatment stage III may reverse to stage I and vice-versa.

Table 1A. Surgical and Non-Surgical Group

| Group Type                           | Stage I              | Stage II               | Stage III              |
|--------------------------------------|----------------------|------------------------|------------------------|
| Surgical Group<br>320 Patients       | 24.7%<br>79 Patients | 33.13%<br>106 Patients | 59.8%*<br>135 Patients |
| Non - Surgical Group<br>528 Patients | 31%<br>164 Patients  | 36%<br>190 Patients    | 33%<br>174 Patients    |

\* Note high percentage of stage III in the surgical group

explain the beneficial, albeit temporary, results of wartime sympathectomy. In contrast, the sympathectomy done in stage III CRPS\*(table 1A) has been reported to show zero percent relief (36). Usually, by the time the physician resorts to the sympathectomy procedure, the patient is in advanced stages of the disease. In such late stages, the nervous system has lost its plasticity and cannot respond properly to surgical sympathectomy (37,38). More over, the disease spreads (1,37,39-44) to other parts of the body; hence a regional sympathectomy will not be of any benefit to the patient.

**Outcome:** ITI showed failure of sympathectomy to relieve the vascular dysfunction. Thermal imaging done in patients who underwent surgical or chemical sympathectomy showed a high percentage of surgical failure(45,46).

### Prolotherapy and Articular Facet Blocks

Articular facet joint blocks and prolotherapy (injection of sclerotic agents to ligament surrounding the joints) act as new sources of trauma

and pain originating from the injured vertebral facet joint. In contrast, spinal epidural and paravertebral blocks do not cause chemical (sclerotic) damage due to injection of hypertonic glucose or phenol as in the case with prolotherapy. These blocks should not be mistaken for articular facet injections. The facet injections should be avoided to prevent harmful facet joint damage. According to Cheema (47)

Table 2.  
Stages of CRPS

#### Stage I:

*Dysfunction:* with thermal changes, neuroinflammation, neurovascular instability, neuropathic pain, vasomotor and flexion spasm.

#### Stage II:

*Dystrophy:* hair, nail, and skin trophic changes; bouts of hair loss, alopecia, skin rash, spontaneous subcutaneous bleeding, ulcerative lesions, edema, and entrapment neuropathy.

#### Stage III:

*Atrophy:* as well as fluctuating vital signs, visceral neuroinflammation, chest pain, neurovascular instability.

paravertebral nerve block provides effective pain relief for both sympathetically maintained pain and sympathetically independent pain. This is in contrast to articular facet (zygapophyseal) blocks which are fraught with pain-

ful joint injuries (due to needle traumatizing the joint). Bogduk et al (48) have reported only 40% pain relief from radiofrequency treatment of the facet joints. The same applies to prolotherapy which is done by injection of

Table 3.  
Neurophysiologic tests for neuropathic pain and somatic pain.

| Tests                                                    | Somatic | Sympa-<br>thetic | Para-Sym-<br>pathetic | Nerve Fiber<br>Type                                                | Clinical<br>application                                                                 | Lim-<br>itations                                                               | Advantages                                                               |
|----------------------------------------------------------|---------|------------------|-----------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| EMG; NCV                                                 | +       | -                | -                     | Somatic,<br>myelinated<br>nerves                                   | Study of ef-<br>ferent spino-<br>thalamic ner-<br>ves                                   | It cannot<br>study the<br>thermo-<br>receptor or<br>vasomotor<br>function      | Neuro-<br>muscular<br>and<br>myelinated<br>somatic<br>nerve study        |
| Infrared<br>Thermal<br>Imaging<br>(ITI)                  | -       | +                | -                     | Micro-<br>vascular<br>and<br>C-thermo-<br>receptors                | Sympathetic<br>function                                                                 | Shows old<br>and new<br>pathologies<br>indiscrimi-<br>nately                   | A total<br>body<br>regional<br>study                                     |
| Laser Evoked<br>Potential (LEP)                          | -       | +                | -                     | Poorly<br>myelinated<br>C- fibres;<br>A $\delta$                   | Study of<br>peripheral<br>and central<br>neuropathic<br>pain                            | Mainly<br>research                                                             | Study of C,<br>A $\beta$ , and A $\delta$<br>fibres                      |
| Microneurogra-<br>phy (MCNG)                             | -       | +                | -                     | Post<br>ganglionic<br>sympathetic<br>efferent<br>C-fibres          | Research on<br>sympathetic<br>efferents                                                 | Invasive,<br>time<br>taking,<br>and<br>painful                                 | A<br>research<br>tool                                                    |
| Quantitative<br>Sensory Test<br>(QST)                    | -       | +                | -                     | C- thermo-<br>receptors vs<br>spino-<br>thalamic<br>tactile nerves | Accurate<br>test for ther-<br>moreceptors<br>vs tactile<br>somato-<br>Sensory<br>nerves | Studies a<br>limited<br>area                                                   | Sensitive<br>study of C-<br>thermo-<br>receptors<br>vs somatic<br>fibres |
| Quantitative<br>Sudomotor<br>Axon Reflex<br>Test (QSART) | -       | -                | +                     | Para-<br>sympathetic;<br>cholinergic,<br>sudomotor<br>nerves       | Sweat<br>function                                                                       | Studies a<br>limited<br>area. It<br>cannot<br>study the<br>thermal<br>function | Sudomotor<br>function                                                    |
| Somato-sensory<br>Evoked<br>Potential<br>(SSEP)          | +       | -                | -                     | Somato-<br>sensory<br>nerve fibres                                 | Identifies<br>sensory<br>nerve tracks                                                   | Not an<br>autonomic<br>test                                                    | Harmless                                                                 |

sclerosing agents (such as phenol) into the ligaments surrounding articular facet joints.

**Outcome:** Thirty-six patients had undergone Prolotherapy before they were referred to our Clinic. ITI showed focal hyperthermia in the area of Prolotherapy. None had effective long-term relief from this prolotherapy.

### Distal Extremity Needle Insertion

In the area of original nerve damage, the hyperthermia points to damage and paralysis of vasoconstrictive function of sympathetic system (1). The hyperthermia area surrounded by hypothermia usually points to the apex of damaged thermosensory nerve resulting in heat leakage, as well as accumulation of substance P (49-51), and nitric oxide(52,53). This is an important therapeutic clue to help avoiding further trauma. Traumatic procedures such as surgical exploration, nerve blocks, botulinum toxin injection, capsaicin, or EMG needle insertion should not be applied to the damaged hyperthermic area in the extremity which may lead to further damage and aggravation of the condition (54-56).

### Amputation

If at all possible, amputation should be avoided (57). All 11 painful amputee patients in our series (Table 1) who were referred to us after they had undergone amputation showed marked deterioration post-op. The surgical stump was the source of multiple neuromas with severe causalgic and ephaptic (11) CRPS II type of intractable pain. Amputation changed the CRPS from type I to type II by forming innumerable neuromas and nerve impingements in the surgical stump. Amputation should be avoided by all means due to its side effects of aggravation of pain and tendency for spread of CRPS. Dieussen et al (58) reported the results of amputation in 28 RSD patients who had undergone 34 amputations in 31 limbs. Only 2 of 28 patients reported partial pain relief. In 26 of 28 patients, stump involvement with RSD made it impossible to wear a prosthesis (57). ITI can identify the proper level of the extremity undergoing amputation (59). This spares the patient from losing any excess tissue in the amputee stump (59).

**Outcome:** ITI provided information that prevented amputation in 5 of 6 patients referred to us for evaluation and for consideration of amputation. Of the 5 patients, 4 showed enough

warmth and intact circulation to prevent amputation. The 5th patient was found to suffer from diabetic neuropathy with multiple pathologic right foot fractures aggravated by 2 years of non-weight bearing. Under proper analgesia, the patient was instructed to start weight bearing. After 3 months, the fractures healed enough to avoid the necessity for amputation.

### Neck And Back Pain

The 1970's and 1980's literature reflects confusing reports on diagnostic value of ITI in cervical and lumbar radiculopathies, back pain, disc herniation, and sciatica (54,56,60-66). More recent literature has reported that ITI has no consistent diagnostic value for the neck and back injuries (67-71). One reason may be the inconsistent delta-T measured by liquid crystal contact thermography (72) making it difficult to arrive at accurate "normal" values.

In the present study, the ITI done in patients suffering from failed spine, neck or back pain, and pain in the extremities revealed conflicting results - especially when compared with the thermal imaging tests done on the same patients in other laboratories. The confusion has its roots in technical limitations, and improper clinical applications of the test(67,68). Harper (73) and Chafetz (74) have successively reported 56% and 40% abnormal ITI of spine in the "normal" controls. In our daily lives, the spine undergoes minor injuries. Such preexisting minor injuries may show persistent minor abnormalities on ITI, contaminating the control studies. Lack of a consistent control standard handicaps the value of ITI in diagnosis of spine pathology. There have been repeated attempts to compare the physiological test of ITI with anatomical tests such as MRI and CT (75). This is an illogical comparison. ITI cannot be expected to diagnose disc herniation because disc bulging and herniation cannot be clearly represented on ITI. Conversely, MRI cannot be expected to identify micro neurosensory pathology.

**Outcome:** In the present study, the ITI done in patients suffering from failed spine, neck or back pain, and pain in the extremities revealed conflicting results - especially when compared with the thermal imaging tests done on the same patients in other laboratories. The confusion has its roots in technical limitations, and improper clinical applications of the test (67, 68).

## **Complex Regional Pain Syndrome (CRPS, RSD)**

ITI can facilitate early diagnosis of Complex Regional Pain Syndrome (CRPS) (76), and can achieve a higher recovery rate among CRPS patients (10,11,34,77) by virtue of early diagnosis of the disease. CRPS cannot be accurately diagnosed by a single test. CRPS is a clinical diagnosis when the following four principles are met:

1. Neuropathic, hyperpathic, or causalgic pain;
2. Vasomotor disturbance, flexor spasm, or tremor;
3. Inflammation at some point in the course of the disease; and
4. Limbic system dysfunction in form of insomnia, agitation, depression, and poor memory (37,78).

Tests such as ITI are mainly helpful to obtain information regarding the nature and extent of the disease, and to guide the clinician in proper management of pain (11). ITI has the advantage of providing a comprehensive picture of the entire body temperature (79). In acute stage, the epicenter of the damaged area is usually hyperthermic (11,80). After a few weeks, the hyperthermic area shrinks. In some cases (80) the hyperthermia persists due to permanent damage to sympathetic nerve fibers (1). This is a harbinger of poor prognosis. The hypothermic area surrounding the hyperthermic epicenter of the damaged nerve reflects up-regulation and supersensitivity of sensory nerves to norepinephrine (81-84).

In chronic stages (85), the disease is manifested by a dysfunctional rather than an up-regulated sympathetic system (11,86-90). The neurovascular instability contributes to confusion and misunderstanding of ITI changes in CRPS. For example, spread of vasoconstriction to other extremities maybe mistaken for other diseases such as Raynaud's Phenomenon (90). The ITI, like any other test, cannot be expected to show 100% diagnostic sensitivity. Even with the cold water stress ITI testing (76,89), it is sensitive in 93 % of the patients, specific in 89 %, positive predictive value (PPV) of 90%, and negative predictive value (NPV) of 94% (76). Recently, Herrick et al (90), have found cold stress ITI useful to diagnose patients suffering from fracture who are at risk for CRPS.

## **Other diagnostic tests in CRPS**

Lee and Weeks (91), in their meta-analysis of scintigraphic bone scan (SBS) (91) showed this test to be positive in no more than 55% of CRPS patients (71,91). EMG and NCV (92,93), or CT and MRI cannot be expected to detect the microscopic perivascular nerve dysfunction in CRPS. Even if a coincidental disc bulging is seen on MRI, surgical procedure in the inflamed region is apt to severely aggravate the CRPS (94-97). Quantitative sudomotor axon reflex test (QSART) (98) (Table 3) studies the post-ganglionic cholinergic sudomotor function of the sympathetic system (94,95,99,100), not the thermoregulatory function. Laser evoked potential (LEP) (Table 3) is a sensitive test for the study of capillary circulation (44, 101-103). It studies a small area of the body thereby limiting its overall extent of information. Quantitative thermal sensory evoked response test (QST) (44, 104,105) (Table 3) is sensitive and useful in studying the functions of c-thermoreceptors and A-beta mechanoreceptors in CRPS (104). This test identifies the threshold of somatic (spinothalamic) cold or heat touch sensation - versus neuropathic (sympathetic) cold or heat pain sensation.

## **Bilateral temperature changes in CRPS**

The temperature difference between the two extremities (delta-T) should not normally exceed more than 0.4 -0.6°C (54,56). In early stages of CRPS, the ITI shows more than 0.50°C difference. In later stages, the temperature difference gradually disappears. The delta T between the two extremities is not statistically significant in CRPS patients. In contrast, comparing the same CRPS patients with non-CRPS group, the CRPS extremities were significantly colder than the control group (106). The cut off line to discriminate the patient from the control group was 0.61°C for accurate predictability of CRPS diagnosis (106). The equalization of function is due to symmetrical representation of autonomic changes at hypothalamic and spinal cord levels (107). Other pathologic changes such as asymmetrical foci of hyperthermia identify the site of the injury. These hyperthermic foci are usually a sign of damage to the nerve fibres causing hyperthermic ephaptic (in contrast to synaptic)(108) electrical discharges between the adjacent sensory nerve fibres. Frequently, the injured side may show a hyperthermic focus, compensated by

the contralateral normal side undergoing moderate hypothermia(109).

### ITI Findings In CRPS Spread

In approximately 1/3 of CRPS patients, the complex regional pain and inflammation spreads to other extremities manifested on ITI test (98,110-114).The spread through paravertebral chain of sympathetic ganglia may be vertical, horizontal, or both (110,111,115,116).

### Cryotherapy for CRPS

Repetitive ice application may result in chilblains (or perniosis) due to inflammatory areas of hyperthermia secondary to long term frost bite type of nerve damage by application of ice. The ITI helps diagnose this condition to discontinue the destructive cryotherapy. Basbaum (117), and others (118-121) have demonstrated lesions affecting large myelinated axons secondary to ice exposure. These lesions are in the form of Valerian degeneration and segmental demyelination (117,118,121). The cryotherapy causes iatrogenic hypothermia with islands of permanent hyperthermia due to frostbite nerve damage mentioned above.

**Outcome:** ITI was helpful in identifying the areas of thermosensory nerve damage, and as well as diagnosing the phenomenon of CRPS spread.

### Diabetic Neuropathy and Diabetic Foot

In advanced stages of diabetic neuropathy, the disease is complicated by neuroinflammatory changes, fractures (Charcot's foot), and by foot ulcers (122-125). The ITI changes in these patients are the prototypical examples of nerve damage causing irreversible hyperthermia in different degrees. Armstrong et al (122) have utilized ITI as the predictor of early sign of deterioration of ulcers and trophic fracture. They have used the high delta-T of 2° C between the involved and contralateral extremities to initiate therapeutic intervention.

**Outcome:** In our studies, in all 11 diabetic foot patients hyperthermic foci were observed. These 11 patients were referred to us for a second opinion before amputation. None of these patient ended up with amputation. ITI played a pivotal role in sparing these patients' extremities. The recognition of neuroinflammatory phenomenon (101) in these patients led us to treat them with weight-bearing, mobilization, nerve blocks, I.V. Mannitol, physical therapy, etc., sparing these patients from amputation as well as relieving neuroinflammation and pain with nerve

blocks and I.V. Mannitol (100gm/500cc D5W treatment)(126,127).

### Tennis Elbow

**Outcome:** ITI is useful in diagnosing Traumatic lateral epicondylitis (128,129), or tennis elbow. The ITI showed a localized hyperthermia at the lateral epicondyle in 53 of 56 patients (95%)(128). Similar finding of hyperthermia is also noted in tarsal tunnel entrapment neuropathy. These areas of hyperthermia should not be aggravated by needle insertion. Any trigger point injection or nerve block should be performed proximal to the hyperthermic area. Injections aimed at the foot, ankle, hand, or wrist causes further trauma and up-regulation of the sympathetic system leading to a source of pain, and further thermal dysfunction (37).

### Thoracic Outlet Syndrome(TOS)

**Outcome:** Another frequently over-diagnosed and over-treated syndrome in neuropathic pain is Thoracic Outlet Syndrome (TOS)(130). Due to the inflammatory nature of neuropathic pain, especially in CRPS in upper extremities, brachial plexitis is frequently mistaken for TOS and is improperly managed by surgery. The surgical procedure becomes a new source of neuropathic pain, further deteriorating the condition (130,131). ITI has been instrumental in identifying the nature of pathology in distal portion of the extremity in form of ephaptic hyperthermia- pointing to the original source of pathology rather than the secondary inflammation of brachial plexitis. ITI spared such patients from surgery for TOS in 14 of 824 CRPS patients with presumptive diagnosis of TOS (37).

### Cervicogenic Headaches

ITI can help diagnose and differentiate cervicogenic headaches from migraine. The cervicogenic headache shows areas of hyper- and hypothermia in the distribution of posterior sensory nerve branches of C2 through C4 nerve roots, and occipital nerves. Nerve blocks in these areas provide excellent relief (11,37). On the other hand, radiofrequency damage to articular facet (48,132,133), or rhizotomy (134) generates a new source of algogenic pathology, hyperthermia and more severe pain. Stimulation of the peripheral ends of the cut dorsal roots dilates cutaneous blood vessels (135). The retrograde activation of cutaneous sensory nerves leads to focal vascular changes causing neuro-

genic inflammation (136,137) due to the release of pro-inflammatory chemicals (50-53, 116, 138-159).

This vasodilation and inflammation explains the hyperthermia in the area of nerve injury. The trigeminal vascular sympathetic function is influenced by many factors including, but not limited to, chemical changes in the blood (160), craniovascular circulatory changes (161,162), and stimulation of trigeminal nucleus by referred pain originating from the posterior nerve branches of the C1 to C4 nerve roots (163).

**Outcome:** ITI helps identify the craniocervical hyperthermic areas, and differentiate this headache from migraine. Where as in migraine headaches thermal fluctuations are quite unstable, in cervicogenic headaches the hyperthermia is present in the occipital nerve region and the craniocervical junction (11). These two types of headaches require two opposite forms of treatment. Sumatriptan aggravates cervicogenic headaches; conversely nerve blocks do not usually relieve the true migraine headaches.

### Migraine Headaches

Unfortunately the term migraine has been relatively loosely applied to any type of neurovascular headache, migraine or otherwise. This results in contamination of studies done on this subject. The ITI has been reported as having no value for evaluation of true, generic migraine headaches (160,164) excluding cervicogenic, TMJ, and Trigeminal nerve injury headaches. The migraine headaches cause craniofacial thermal fluctuations which are unstable and change in different stages of the migraine attack (115). Hypothermia over the ophthalmic branch of the trigeminal nerve has been reported on ITI of migraine patients (160). It is seen mainly during the acute attack as a transient phenomenon. Mathew et al (165), have reported thermal symmetry in 78% of headache - free volunteers. However, this symmetry can also be present in a high percentage of migraineous patients as well.

**Outcome:** More studies are needed regarding the role of ITI in true migraine.

### Temporomandibular Dysfunction (TMD)

ITI sheds more light on the complex subject of temporomandibular dysfunction (TMD): In painful, clicking type of TMD, McBeth et al, showed ITI to have a diagnostic sensitivity of

87% (166). This was in contrast with normal controls showing normal specificity of 86% (166). ITI and liquid crystal thermographies were usually normal in between flare ups of trigeminal neuralgia or trigeminovascular facial pains (167). During the symptomatic attacks ITI showed hot or cold spots in over 80 % of patients (84,167). The hot spots are more likely due to TMJ pathology (168,169) or facial sinusitis (169).

Thirty-three patients who had undergone TMJ surgery followed by persistence and spread of neuropathic pain were referred to us for diagnosis and treatment in the past six years. Two main factors - careful history taking and ITI - solved the puzzle, and explained the reason for poor recovery.

**Outcome:** The ITI revealed an abnormal sympathetic dysfunction in the cervical (16 patients), lumbar (9 patients), and thoracic spine regions (7 patients). Only one patient had shown no spinal involvement - instead the patient was found to suffer from maxillary bone osteonecrosis and abnormal thermal changes in the Trigeminal nerve distribution.

### Conclusion

A properly performed ITI, provides diagnostic therapeutic information not obtained by EMG, NCV, CT, or MRI. This information is indispensable in helping to arrive at an accurate diagnosis, and in identifying the pathologic areas. It helps the physician to avoid further invasive blocks or surgical procedures.

Lack of such information leads to misdiagnosis, and to labeling the patients for being a malingerer, or as suffering from conversion reaction.

### Acknowledgment

We are most grateful to Mr. Eric Phillips for his indispensable, and extensive research and preparation of this report.

**Disclaimer:** The authors have no fiduciary interest in any medical supplies, or any medications discussed in this paper.

### References

1. Hooshmand H, Hashmi M, Phillips EM: *Infrared Thermal Imaging As A Tool In Pain Management - An 11 Year Study, Part I of II.* Thermology international 2001; 11 (2): 53-65.
2. Kozin F: *Reflex sympathetic dystrophy: a review.* Clin Exp Rheumatol. 1992; 10: 401-9.

3. Carr DB, Cepeda MS, Lau J: What is the evidence for the therapeutic role of local anesthetic sympathetic blockade in RSD or causalgia? An attempted meta-analysis [abstract] Eighth world congress on pain, Vancouver, August 17-22 1996., Seattle: IASP Press . 1996; 406.

4. Raj PP, Tutorial 16: diagnostic nerve block. *Pain Digest.* 1995; 5:25-34.

5. Hogan QH, Taylor ML, Goldstein M, Stevens R, Kettler R: Success rates in producing sympathetic blockade by paratracheal injection. *Clin J Pain.* 1994; 10: 139-45.

6. Schott GD: Interrupting the sympathetic outflow in causalgia and reflex sympathetic dystrophy. A futile procedure for many patients. *BMJ.* 1998; 316: 792-3.

7. Leriche R: De la causalgie, envisagée comme une névrite du sympathique et de son traitement Par la denudation et l'excision des plexus nerveux péri-arteriels. *Presse Med.* 1916; 24:178-80.

8. Welch E, and Geary J: Current status of thoracic dorsal sympathectomy. *J of Vascular Surgery.* 1984; 1: 202-14.

9. Jebara VA, and Saade B: Causalgia: A wartime experience-report of twenty treated cases. *J of Trauma.* 1987; 27:519-24.

10. Payne R: Neuropathic pain syndromes with special reference to causalgia and reflex sympathetic dystrophy. *Clin J Pain.* 1986; 2: 59-73.

11. Hooshmand H: Chronic Pain: Reflex Sympathetic Dystrophy: Prevention and Management. CRC Press, Boca Raton FL. 1993.

12. Allbritton FF, and Maltby GL: Causalgia secondary to injury of major peripheral nerves: treatment by sympathectomy. *Surgery.* 1946; 19: 407-14.

13. Verrill P: Sympathetic ganglion lesions. In Wall PD, Melzack R, eds. *Textbook of pain.* Edinburg: Churchill Livingstone. 1984; 581-9.

14. Sweet WH, Poletti CE: Causalgia and sympathetic dystrophy (Sudeck's Atrophy) In: Aronoff GM, ed *Evaluation and treatment of chronic pain.* Baltimore: Urban and Schwartzenberg. 1985; 149-65.

15. White JC, Heroy WW, Goodman EN: Causalgia following gunshot injuries of nerves. *Ann Surg.* 1948; 128: 161- 83.

16. Hardy WG, Posh JL, Webster JE, Gurdjian ES: The problem of minor and major causalgias. *Am J Surg.* 1958; 95: 545-4.

17. Tracy GD, and Cockett FB: Pain in the lower limb after sympathectomy. *Lancet.* 1957; 1: 12-4.

18. Berguer R, and Smith R: Transaxillary sympathectomy (T2 to T4) for relief of vasospastic/sympathetic pain of the upper extremities. *Surgery.* 1981; 89: 764-9.

19. Mayfield FH: Causalgia. Springfield: Charles C. Thomas. 1951.

20. Bunker RH, Cox WA, Scully TJ, Seitter G, Pauling FW: Causalgia and transthoracic sympathectomy. *Am J Surg.* 1972; 724-7.

21. Raskin NH, Levinson SA, Hoffman PM, Pickett JB, Fields HL: Post-sympathectomy neuralgia: amelioration with diphenylhydantoin and carbamazepine. *Am J Surg.* 1974; 128: 75-8.

22. Shumacker HB: A personal overview of causalgia and other reflex dystrophies. *Ann Surg.* 1985; 201: 278-89.

23. White JC, and Sweet WH: *Pain and the neurosurgeon.* Springfield: Charles C Thomas. 1969.

24. Bonica JJ: *The management of pain.* Philadelphia: Lea and Feibiger. 1953.

25. Evans JA: Reflex sympathetic dystrophy; report on 57 cases. *Ann Intern Med.* 1947; 26; 417-26.

26. Barnes R: The role of sympathectomy in the treatment of causalgia. *J Bone Joint Surg [Br].* 1953; 35B: 172-80.

27. Thompson JE, Patman D, Persson AV: Management of post-traumatic pain syndromes (causalgia). *Am Surg.* 1975; 41: 599-2.

28. De Takats G: Reflex dystrophy of the extremities. *Arch Surg.* 1937; 34: 939-56.

29. Wirth FP, Rutherford RB: A civilian experience with causalgia. *Arch Surg.* 1970; 100: 633-8.

30. Shumacker HB, Speigel IJ, Upjohn RH: Causalgia I. The role of the sympathetic interruption in treatment. *Surg Gynecol Obstet.* 1948; 86: 76-6.

31. Shumacker HB, Speigel IJ, Upjohn RH: Causalgia II. The signs and symptoms, with particular reference to vasomotor disturbances. *Surg Gynecol Obstet.* 1948; 86: 452-60.

32. Bernstein BH, Singsen BH, Kent JT, Kornreich H, King R Hicks R, et al: Reflex neurovascular dystrophy in childhood. *J Pediatr.* 1978; 93:211-5.

33. Wilder RT, Berde CB, Wolohan M, Vieyra MA, Masek BJ, Michel LJ: Reflex sympathetic dystrophy in children. *J Bone Joint Surg.* 1992; 74: 910-9.

34. Poplawski ZJ, Wiley AM, Murray JF: Post traumatic dystrophy of the extremities. *J Bone Joint Surg [Am].* 1983; 65:642-55.

35. Olcott C, IV, Eltherington LG, Wilcosky BR, Shoar PM, Zimmerman JJ, Fogarty TJ: Reflex sympathetic dystrophy- The surgeons role in management. *J Vasc Surg.* 1991; 14: 488-95.

36. AbuRahma AF, Robinson PA, Powell M, Bastug D, Boland JP: Sympathectomy for reflex sympathetic dystrophy: factors affecting outcome. *Ann Vasc Surg.* 1994; 8: 372-9.

37. Hooshmand H, Hashmi H: Complex regional pain syndrome (CRPS, RSDS) diagnosis and therapy. A review of 824 patients. *Pain Digest.* 1999; 9: 1-24.

38. Ochoa JL, Verdugo RJ: Reflex sympathetic dystrophy: A common clinical avenue for somatoform expression. *Neurol Clin.* 1995; 13: 351-63.

39. Schiffenbauer J, Fagien M: Reflex sympathetic dystrophy involving multiple extremities. *J Rheumatol.* 1983; 20:165-9.

40. Schwartzman RJ: Reflex sympathetic dystrophy and causalgia. *Neurol Clin.* 1992; 10: 953-73.

41. van der Laan L, ter Laak HJ, Gabreels-Festen A, Gabreels F, Goris RJ: Complex regional pain syndrome type I (RSD). Pathology of skeletal muscle and peripheral nerve. *Neurology*. 1998; 51: 20-5.

42. Radt P: Bilateral reflex neurovascular dystrophy following a neurosurgical procedure. Clinical picture and therapeutic problems of the syndrome. *Confin Neurol*. 1968; 30:341-8.

43. Nashold BS Jr, Friedman H: Neurosurgical relief of pain. 1507-11.

44. Wahren LK, Torebjork HE: Quantitative sensory test in patients with neuralgia 11 to 25 years after injury. *Pain*. 1992; 48:237-44.

45. Bonica JJ: *The Management of Pain*. Lea & Feibiger Philadelphia. 1990; Vol. 1: p 229.

46. Schwartzman RJ, Liu JE, Smullen SN, Hyslop T, Tahmoush AJ: Long-term outcome following sympathectomy for complex regional pain syndrome type I (RSD). *Journal of Neurological Sciences*. 1997; 150: 149-52.

47. Cheema SP, Ilesley D, Richardson J, Sabanathan S: A thermographic study of paravertebral analgesia. *Anaesthesia*. 1995; 50: 118-21.

48. Lord SM, Barnsley L, Bogduk N: Percutaneous radiofrequency neurotomy in the treatment of cervical zygapophyseal joint pain: a caution. *Neurosurgery*. 1995; 36: 732-9.

49. Fitzgerald M.: The spread of sensitization of polymodal nociceptors in the rabbit from nearby injury by antifromic stimulation. *J Physiol [Lond]*. 1979; 297: 207-16.

50. Lembeck F, Gamse R, Juan H: Substance P and Sensory Nerve Endings. In US VonEuler, B. Pernow, eds. *Substance P 37th Nobel Symposium*, Stockholm 1976. Raven Press. New York 1977.

51. Bar-shavi Z, Goldman R, Stabinsky Y, Gottlieb P, Fridkin M, Teichberg VI et al: Enhancement of phagocytosis-a newly found activity of substance P residing in its N-terminal tetrapeptide sequence. *Biochem Biophys Res Commun*. 1980; 94:1445-51.

52. Anbar M, Gratt BM: Role of nitric oxide in physiopathology of pain. *J of Pain and Symptom Mgmt*. 1997; 14: 225-54.

53. Anbar M: Me chanism of hyperthermia of the cancerous breast. *Biomedical Thermology*. June 1995; Vol 15 No 2.

54. Uematsu S, Edwin DH, Jankel WR, Kozikowski J, Trattner M: Quantification of thermal asymmetry, Part I: Normal values and reproducibility. *J Neurosurg*. 1988; 69: 552-5.

55. Wexler CE: Thermographic evaluation of trauma (spine). *Acta Thermographica*. 1980; 5:3-10.

56. Uematsu S: Thermographic imaging of cutaneous sensory segment in patient with peripheral nerve injury. Skin temperature stability between sides of the body. *J Neurosurg*. 1985; 62:716-20.

57. Rowbotham MC: Complex regional pain syndrome type I (reflex sympathetic dystrophy). More than a myth. *Editorial*. *Neurology*. 1998; 51: 4-5.

58. Dielissen PW, Claassen AT, Veldman PH, Goris RJ: Amputation for reflex sympathetic dystrophy. *J Bone Joint Surg*. 1995; 77:270-3.

59. McCollum PT, Spencer VA, Walker WF: Amputation for peripheral vascular disease: the case for level selection. *Br J Surg*. 1988; 75: 1193-5.

60. Perelman RB, Adler D, Humphreys M: Reflex sympathetic dystrophy: electronic Thermography as an aid in diagnosis. *Orthop Rev*. 1987; 16: 561-6.

61. Uematsu S: Thermographic imaging of the sensory dermatome, *Society for Neuroscience Abstracts*. 1983; 9: 324.

62. Pulst SM, Haller P: Thermographic assessment of impaired sympathetic function in peripheral nerve injuries. *J Neurol*. 1981; 226: 35-42.

63. Wexler CE, Small RB: Thermographic demonstration of a sensory nerve deficit. A case report. *J Neurol Ortho Surg* 1982; 3: 73-5.

64. Gateless D, Gilroy J: Tight-jeans meralgia: hot or cold. *JAMA*. 1984; 252: 42-3.

65. Comstock C, Marchettini P, Ochoa J: Thermographic mapping of skin of the human hand during intrafascicular nerve microstimulation. Paper presented at the Peripheral nerve study group meeting, Switzerland . September 1985.

66. Brelsford K, Uematsu S: Thermographic presentation of cutaneous sensory and vasomotor activity in the injured peripheral nerve. *J Neurosurg*. 1985; 62: 711-5.

67. Devulder J, Dumoulin K, De Laat M, Rolly G: Infra-red thermographic evaluation of spinal cord electrostimulation in patients with chronic pain after failed back surgery. *Br J Neurosurg*. 1996; 10: 379-83.

68. McCulloch J, Frymoyer J, Steurer P, Riaz G, Hurst F: Thermography as a diagnostic aid in sciatica. *J Spinal Disord*. 1993; 6: 427-31.

69. Wetzel FT, LaRocca SH, Andinolfi M: The treatment of chronic extremity in failed lumbar surgery. The role of lumbar sympathectomy. *Spine*. 1992; 17: 1462-8.

70. So YT, Olney RK, Aminoff MJ: A comparison of thermography and electromyography in the diagnosis of cervical radiculopathy. *Muscle Nerve*. 1990; 13: 1032-6.

71. Demangeat JL, Constantinesco A, Brunot B, Foucher G, Farot JM: Three phase bone scanning in reflex sympathetic dystrophy of the hand. *J Nucl Med*. 1988; 29:26-32.

72. Mills GH, Davies GK, Getty CJ, Conway J: The evaluation of liquid crystal thermography in the investigation of nerve root compression due to lumbosacral lateral spinal stenosis. *Spine*. 1986; 11: 427-32.

73. Harper CM Jr, Low PA, Fealey RD, Chelimsky TC, Proper CJ, Cullen DA: Utility of thermography in the diagnosis of lumbosacral radiculopathy. *Neurology*. 1991; 41: 1010-4.

74. Chafetz N, Wexler CE, Kaiser JA: Neuromuscular thermography of the spine with CT correlation. *Spine*. 1988; 13: 922-5.

75. Thomas D, Cullum D, Siahamis G, Langlois S: Infrared thermographic imaging, magnetic resonance imaging, CT scan and myelography in low back pain. *Br J Rheumatol*. 1990; 29: 268-73.

76. Gulevich SJ, Conwell TD, Lane J, Lockwood B, Schwettmann RS, Rosenberg N, et al: Stress infrared telethermography is useful in the diagnosis of complex regional pain syndrome, type I (formerly reflex sympathetic dystrophy) *Clin J Pain*. 1997; 13: 50-9.

77. Miller RD, Munger WL, Powell PE: Chronic pain and local anesthetic neural blockade In: Cousins JJ and Bridenbaugh PE, eds. *Neural blockade in clinical anesthesia and management of pain*. Philadelphia: JB Lippincott. 1980; 616-36.

78. Benarroch EE: The central autonomic network: functional organization, dysfunction, and perspective. *Mayo Clinic Proc*. 1993; 68 : 988-1001.

79. Steed PA: The utilization of contact liquid crystal thermography in the evaluation of temporomandibular dysfunction . *Cranio*. 1991; 9: 120-8.

80. Veldman PH, Reynen HM, Arntz IE, Goris RJ: Signs and symptoms of reflex sympathetic dystrophy: prospective study of 829 patients. *Lancet*. 1993; 342:1012-6.

81. Callow ID, Campisi P, Lambert ML, Feng Q, Arnold JM: Enhanced in vivo alpha 1- and alpha 2-adrenoceptor-mediated vasoconstriction with indomethacin in humans. *Am J Physiol*. 1998; 275: 837-43.

82. Drummond PD, Finch PM , Smythe GA: Reflex sympathetic dystrophy: the significance of differing plasma catecholamine concentrations in affected and unaffected limbs. *Brain*; 1991; 114:2025-36.

83. Sato J, Perl ER: Adrenergic excitation of cutaneous pain receptors induced by peripheral nerve injury. *Science*. 1991; 25:1608-10.

84. Perl ER: Alterations in the responsiveness of cutaneous nociceptors. Sensitization by noxious stimuli and the induction of adrenergic responsiveness for nerve injury. in: Willis, WD Jr, ed. *Hyperalgesia and Allodynia*. Raven Press, New York. 1992; 59-79.

85. Birklein F, Riedl B, Claus D, Neundorfer B: "Pattern of autonomic dysfunction in time course of complex regional pain syndrome." *Clinical Autonomic Research*. 1998; 8: 79-85.

86. Ochoa J, Torebjork HE, et al: Mechanisms of neuropathic pain. *Advances in Pain Research and Therapy*. Edited by H.L. Fields, et al. Raven Press, New York. 1985; 19: 431-50.

87. Roberts WJ: A hypothesis on the physiological basis for causalgia and related pains. *Pain*. 1986; 24: 297- 11.

88. Roberts WJ, Foglesong ME: Identification of afferents contributing to sympathetically evoked activity in wide dynamic range neurons. *Pain*. 1988; 34:305-14.

89. Robbins WB: Thermography and Pain. In *Biomedical Thermology*. New York. Alan R. Liss . 1982; 361-75.

90. Herrick A, el-Hadidy K, Marsh D, Jayson M: Abnormal thermoregulatory responses in patients with reflex sympathetic dystrophy syndrome. *J Rheumatol*. 1994; 21: 1319-24.

91. Lee GW, Weeks PM: The role of bone scintigraphy in diagnosing reflex sympathetic dystrophy. *J Hand Surg [Am]*. 1995; 20:458-63.

92. Dyck PJ: Limitations in predicting pathologic abnormality of nerves from the EMG examination. *Muscle Nerve*. 1990; 13:371-5.

93. Drummond PD, Skipworth S, Finch PM: alpha 1- adrenoceptors in normal and hyperalgesic human skin. *Clin Sci (Colch)*. 1996; 91: 73-7.

94. Pollock RE, Lotzova E, Stanford SD: Mechanism of surgical stress impairment of human perioperative natural killer cell cytotoxicity. *Arch Surg*. 1991; 126:338-42.

95. Tonnesen E: Immunological aspects of anaesthesia and surgery-with special reference to NK cells. *Dan Med Bull*. 1989; 36:263-81.

96. Veldman PH, Goris RJ: Surgery on extremities with reflex sympathetic dystrophy. *Unfallchirurg*. 1995; 98:45-8.

97. Page GG: The medical necessity of adequate pain management. *Pain Forum*. 1996; 5:227-33.

98. Chelinsky T, Low PA, Naessens JM, Wilson PR, Amadio PC, O'Brien PC: Value of autonomic testing in reflex sympathetic dystrophy. *Mayo Clin Proc*. 1995; 70:1029-40.

99. Maselli RA Jaspan JB, Soliven BC, Green AJ, Spire JP, Arnason BG: Comparison of sympathetic skin response with quantitative sudomotor axon reflex test in diabetic neuropathy. *Muscle Nerve*. 1989; 12: 420-3.

100. Low PA, Opfer-Gehrking TL, Proper CJ, Zimmerman I: The effect of aging on cardiac autonomic and postganglionic sudomotor function. *Muscle Nerve*. 1990; 13:152-7.

101. Schwartzman RJ: Reflex Sympathetic Dystrophy. *Curr Opin Neurol Neurosurg*. 1993; 6: 531-6.

102. Baron R, Maier C: Reflex sympathetic dystrophy, skin blood flow, sympathetic vasoconstrictor reflexes, and pain before and after surgical sympathectomy. *Pain*. 1996; 67:317-26.

103. Kurvers H A, Jacobs MJ, Beuk RJ, Van den Wildenberg FA, Kitslaar PJ, Slaaf DW, et al: Reflex sympathetic dystrophy: evolution of micro circulatory disturbance in time. *Pain*. 1995; 60: 333-40.

104. Dotson RM: Clinical Neurophysiology laboratory tests to assess the nociceptive system in humans. *J Clin Neurophysiology*. 1997; 14: 32-45.

105. Verdugo R, Ochoa JL: Quantitative somatosensory thermotest. A key method for functional evaluation of small caliber afferent channels. *Brain*. 1992; 115:893-13.

106. Bruehl S, Lubenow TR, Nath H, Ivankovich O: Validation of thermography in the diagnosis of reflex sympathetic dystrophy. *Clin J Pain*. 1996; 12: 316-25.

107. Scheuplein RJ: Mechanism of temperature regulation in the skin. In: Fitzpatrick TB, Eisen AZ, Wolff K, Freedberg IM, Austen KF, eds. *Dermatology in General Medicine*. 3rd ed New York McGraw-Hill. 1987; 347-57.

108. Livingston WK: Pain mechanisms: A physiological interpretation of causalgia and its related states. In London, MacMillan. 1944.

109. Teeple E, Ferrer EB, Ghia JN, Pallares V: Pourfour Du Petit syndrome- hyper sympathetic dysfunctional state following a direct non-penetrating injury to the cervical sympathetic chain and brachial plexus. *Anesthesiology*. 1981; 55: 591-2.

110. Fredriksen TA, Hovdal H, Sjaastad O: "Cervicogenic headache": clinical manifestation. *Cephalgia*. 1987; 7:147-60.

111. Moskowitz MA: The neurobiology of vascular head pain *Ann Neurol*. 1984; 16:157-68.

112. Edwards BE: Reflex sympathetic dystrophy since Livingston. *Thermology*. 1988; 3: 59-61.

113. Livingston WK: *Pain Mechanisms*. New York: MacMillan. 1943.

114. Mitchell SW: *Injuries of Nerves and their Consequences*. Philadelphia: JB Lippincott Co. 1872; p 305.

115. Moskowitz MA: Basic mechanisms in vascular headache. *Neurol Clin*. 1990; 8: 801-15.

116. Joshi M: The importance of L-arginine metabolism in melanoma: an hypothesis for the role of nitric oxide and polyamines in tumor angiogenesis. *Free Radical Biol Med*. 1997; 22: 573-8.

117. Basbaum CB: Induced hypothermia in peripheral nerve: electron microscopic and electrophysiological observations. *J Neurocyt*. 1973; 2:171-87.

118. Ernst E, Fialka V: Ice freeze pain? A review of the clinical effectiveness of analgesic cold therapy. *J Pain Symptom Manage*. 1994; 9:56-59.

119. Lee JM, Warren MP, Mason SM: Effects of ice on nerve conduction velocity. *Physiotherapy*. 1978; 64:2-6.

120. Taber C, Countryman K, Fahrenbruch J, La-Count K, Cornwall MW: Measurement of reactive dilation during cold gel pack application of non-traumatized ankles. *Phys Ther*. 1992; 72:294-9.

121. Li CL: Effect of cooling on neuromuscular transmission in the rat. *Am J Physiol*. 1955; 130:53-4.

122. Armstrong DG, Lavery LA, Liswood PJ, Todd WF, Tredwell JA: Infrared dermal thermometry for the high- risk diabetic foot. *Physical Therapy*. 1997; 77: 169-7.

123. Bergholdt HT, Brand PW: Temperature assessment and plantar inflammation. *Lepr Rev*. 1976; 47: 211-9.

124. Harris JR, Brand PW: Patterns of disintegration of the tarsus in the anaesthetic foot. *J Bone J Surg [Br]*. 1966; 48: 4-16.

125. Birke JA, Sims DS: The insensitive foot. In: Hunt GC, McPoil TG, eds. *Physical Therapy of the Foot and Ankle*. 2nd ed. Churchill Livingstone Inc, New York NY. 1995; 159-70.

126. van der Laan L, Goris RJ: Reflex sympathetic dystrophy an exaggerated regional inflammatory response? *Hand Clinics*. 1997; 13: 373-85.

127. Hooshmand H, Dove J, Houff S, Suter C: Effects of diuretics and steroids in CSF pressure, a comparative study. *Arch Neurol*. 1969; 21:499-9.

128. Shilo R, Engel J, Farin I, Horochowski H: Thermography as a diagnostic aid in tennis elbow. *Handchirurgie*.1976; 8: 101-3.

129. Koudela K, Novak B: Entezopatia epicodyli humeri lateralis: termographic a termometrie loketniho kloubu. *Acta Chir Orthop Traumatol Cech*. 1985; 52: 415-6.

130. Cherington M, Happer I, Machanic B, Parry L: Surgery for thoracic outlet syndrome may be hazardous to your health. *Muscle Nerve*. 1986; 9: 632-4.

131. Page GG: Balancing the risks of pain with the risks of pain-relieving drugs. *Pain Forum*. 1996; 5: 244 -6.

132. Lippit AB: The facet joint and its role in spine pain. *Spine*. 1984; 9: 746.

133. Bogduk N, Macintosh JE, Marsland : A technical limitation to the efficacy of radiofrequency neurotomy for spinal pain. *Neurosurgery*. 1987; 20: 529-35.

134. Wetzel FT, Phillips FM, April CN: Extradural sensory rhizotomy in the management of chronic lumbar radiculopathy: a minimum 2-year follow-up study. *Spine*. 1997; 22: 2283-91.

135. Stricker S: Studies on the root vessel of the sciatic nerve [in German]. *Sitzungsber Kaiserl Akad Wiss (Wien)*. 1876; 3: 173-85.

136. Bruce NA: The relation of sensitive nerve endings to the process of inflammation [in German]. *Arch Exp Pathol Pharmacol*. 1910; 63: 424-33.

137. Limmroth V, Cutrer FM, Moskowitz MA: Neurotransmitters and neuropeptides in headache. *Current Opinion in Neurology*. 1996; 9: 206-10.

138. Bernstein JE, Swift RM, Soltani K, Lorincz AL: Inhibition of axon reflex vasodilatation by topically applied capsaicin. *J Invest Dermatol*. 1981; 76: 394-5.

139. Wharton J, Gulbenkian S, Mulderry PK, Ghatei MA, McGregor GP, Bloom SR, et al: Capsaicin induces a depletion of calcitonin gene-related peptide (CGRP) Immunoreactive nerves in the cardiovascular system of the guinea pig. *J Auton Nerv Sys*. 1986; 16:289-309.

140. Thomasen LL, Miles DW, Happarfield L, Bocabow LG, Knowles RG, Moncada S: Nitric oxide synthase activity in human breast cancer. *Br J Cancer*. 1995; 72: 41-4.

141. Sirsjo A, Karlsson M, Gidlof A, Rollman O, Torma H: Increased expression of inducible nitric oxide synthase in psoriatic skin and cytokine-stimulated cultured keratinocytes. *Br J Dermatol*. 1996; 134: 643-8.

142. Murrell GA, Szabo C, Hannafin JA, Jang D, Dolan MM, Deng XH et al: Modulation of tendon healing by nitric oxide. *Inflamm Res*. 1997; 46: 19-27.

143. Murrell GA, Dolan MM, Jang D, Szabo C, Warren RF, Hannafin JA: Nitric oxide - an important articular free radical. *J Bone Joint Surg.* 1996; 78A: 265-74.

144. Manfield L, Jang D, Murrell GA: Nitric oxide enhances cyclooxygenase activity in articular cartilage. *Inflamm Res.* 1996; 45: 254-8.

145. Kaur H, Halliwell B: Evidence for nitric oxide-mediated oxidative damage in chronic inflammation. Nitrotyrosine in serum and synovial fluid from rheumatoid patients. *FEBS Letter.* 1994; 350: 9-12.

146. Grabowski PS, Macpherson H, Ralston SH: Nitric oxide production in cells derived from the human joint. *Br J Rheumatol.* 1996; 35: 207-12.

147. Kang JD, Georgescu HI, McIntyre-Larkin L, Stefanovic-Racic M, Evans CH: Herniated cervical intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6 and prostaglandin E-2. *Spine.* 1995; 20: 2373-8.

148. Ueki Y, Miyake S, Tominaga Y, Eguchi K: Increased nitric oxide levels in patients with rheumatoid arthritis. *J Rheumatol.* 1996; 23:230-6.

149. Evans DM, Ralston SH: Nitric oxide and bone. *J Bone & Mineral Res.* 1996; 11: 300-5.

150. Takahashi T, Kondoh T, Kamei K, Seki H, Fukuda M, Nagai H, et al: Elevated levels of nitric oxide in synovial fluid from patients with temporomandibular disorders. *Oral Surg Oral Med Oral Pathol Oral Radiol Endod.* 1996; 82: 505-9.

151. Amin AR, Attur M, Patel RN, Thakker GD, Marshall PJ, Rediske J, et al: Superinduction of cyclooxygenase-2 activity in human osteoarthritis-affected cartilage. Influence of nitric oxide. *J Clin Investigation.* 1997; 99: 1231-7.

152. Attur MG, Patel RN, Abramson SB, Amin AR: Interleukin-17 up-regulation of nitric oxide production in human osteoarthritis cartilage. *Arthritis Rheum.* 1997; 40: 1050-3.

153. Amin AR, Di Cesare PE, Vyas P, Attur M, Tzeng E, Billiar TR, et al: The expression and regulation of nitric oxide synthase in human osteoarthritis-affected chondrocytes: evidence for up-regulated neuronal nitric oxide synthase. *J Expt Med.* 1995; 182: 2097-102.

154. Kang JD, Georgescu HI, McIntyre-Larkin L, Stefanovic-Racic M, Donaldson WF 3rd: Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6 and prostaglandin E-2. *Spine.* 1996; 21: 271-7.

155. Anbar M: Nitric oxide: a synchronizing chemical messenger. *Experientia.* 1995; 51: 545-50.

156. Anbar M: Thermological implication of vasodilation mediated by nitric oxide. *Thermologie Österreich.* 1995; 5: 15-27.

157. Anbar M: The role of nitric oxide in thermoregulatory processes and their clinical applications in thermology. In: *The Thermal Image in Medicine and Biology*, K Ammer, F Ring, Eds, Uhlen Verlag, Vienna. 1995; pp 140- 5.

158. Anbar M: Clinical thermal imaging today. Shifting from Phenomenological thermography to pathophysiologically based thermal imaging. *IEEE Engineering in Medicine and Biology.* 1998; 25-33.

159. Fabi F, Argiolas L, Chiavararelli M, Del Baso P: Nitric oxide-dependent and -independent modulation of sympathetic vasoconstriction in the human saphenous vein. *Eur J Pharmacol.* 1996; 309:41-50.

160. Lance JW, Anthony M, Somerville B: Thermographic, hormonal, and clinical studies in migraine. *Headache.* 1970; 10: 93-104.

161. Lance JW, Anthony M, Somerville B: Facial thermography in cerebral vascular insufficiency and migraine. *Proceedings of the Australian Association of Neurologist.* 1973; 9: 31-8.

162. Lance JW, Somerville B: Detection of stenosis or occlusion of the internal carotid artery by facial thermography. *Medical J Australia.* 1972; 1: 97-100.

163. Swerdlow B, Dieter JN: Posterior cervical-thoracic thermograms: pattern persistence and correlation with chronic headache syndromes. *Headache.* 1987; 27: 10-5.

164. Ford RG, Ford KT: Thermography in the diagnosis of headache. *Sem Neurology.* 1997; 17: 343-8.

165. Mathew N, Alvarez L: The usefulness of thermography in headache. In FC Rose, *Progress in Migraine Research - 2nd ed.* London: Pittman. 232-45.

166. McBeth SB, Gratt BM: Thermographic assessment of temporomandibular disorders symptomatology during orthodontic treatment. *Am J Orthod Dentofacial Orthop.* 1996; 109: 481-8.

167. Graff-Radford SB, Ketelaer MC, Gratt BM, Solberg WK: Thermographic assessment of neuropathic facial pain. *J Orofac Pain.* 1995; 9: 138-46.

168. Gratt BM, Graff-Radford SB, Shetty V, Solberg WK, Sickles EA: A 6 year clinical assessment of electronic facial thermography. *Dentomaxillofac Radiol.* 1996; 25: 247-55.

169. Pogrel MA, McNeil C, Kim JM: The assessment of trapezius muscle symptoms of patients with temporomandibular disorders by the use of liquid crystal thermography. *Oral Surg Oral Med Oral Pathol Oral Radiol Endod.* 1996; 82: 145-51.

Address for correspondence

H. Hooshmand, M.D.

Neurological Associates Pain Management Center  
1255 37th Street, Suite B  
Vero Beach, Florida, USA.

(Manuscript received on 7.3.2000. revision accepted 20.4.2001)

# Magnetic Heating as a Therapeutic Tool

**Ingrid Hilger<sup>1</sup>, Sylvia Frühauf, Wilfried Andrä<sup>2</sup>, Robert Hiergeist<sup>2</sup>,  
Rudolf Hergt<sup>2</sup>, Werner A. Kaiser<sup>1</sup>**

<sup>1</sup>Institut für Diagnostische und Interventionelle Radiologie des Klinikums der  
Friederich-Schiller-Universität Jena, Bachstraße 18, D-07740 Jena, Germany

<sup>2</sup>Institut für Physikalische Hochtechnologie e.V., Winzerlaer Straße 10, D-07745 Jena, Germany

**Rationale and Objectives:** In preliminary investigations a method called "magnetic thermoablation" was proposed for the localized elimination of tumors by heating. Therapeutic heating is generated by the application of a magnetic material at the target and the exposure to an alternating magnetic field. The present study deals with the *in vitro* estimation of critical heating dosages ( $^{\circ}\text{C} \times \text{min}$ ) for a reliable killing of tumor cells and the elucidation of the practicability of an application of correspondent dosages by magnetic thermoablation using a *in vivo* experimental tumor model.

**Methods:** Human adenocarcinoma cells (BT-20) were exposed to 37 to 62  $^{\circ}\text{C}$  (water bath) for 4 min and incubated for 24, 48 and 72 h before colorimetric cell viability determinations. The cells were implanted into 5 immunodeficient mice.  $12 \pm 3$  mg magnetite per 300  $\text{mm}^3$  tumor tissue was inserted into the tumor. Animals were exposed to an AC magnetic field (amplitude: 6.5 kA/m, frequency: 400 kHz) for 4 min and temperature measurements were performed at the tumor periphery and the rectum. The deposited heat dosages (DHD) were defined as the area between the time-dependent temperature curves during treatments and the temperature level without heating.

**Results:** The critical DHD lethal for tumor cells varied from  $47 \pm 2$   $^{\circ}\text{C} \times \text{min}$  (temperature setting of 51  $^{\circ}\text{C}$ ) and  $61 \pm 2$   $^{\circ}\text{C} \times \text{min}$  (temperature setting of 55  $^{\circ}\text{C}$ ) due to decreasing cell survival rates with increasing incubation time after treatments. The heat dosages deposited in tumors by magnetic thermoablation ranged between  $197 \pm 29$   $^{\circ}\text{C} \times \text{min}$  and  $106 \pm 4$   $^{\circ}\text{C} \times \text{min}$  (mean temperatures at the end of treatments:  $84 \pm 3$   $^{\circ}\text{C}$  and  $59 \pm 0$   $^{\circ}\text{C}$ ) for the distal and proximal tumor periphery, respectively. The rectal temperatures increased by about 3  $^{\circ}\text{C}$  during treatments.

**Conclusions:** The comparison of the DHD from *in vitro* and *in vivo* investigations in tumor bearing mice demonstrates that a reliable cell killing is possible by the proposed method.

**Key words:** magnetic thermoablation, cancer therapy, heating, critical temperatures, iron oxides

## Magnetisch induzierte Wärme als Therapiemittel

**Zielsetzung:** In vorangegangenen Untersuchungen wurde eine Methode, die sogenannte „magnetische Thermoablation“, zur Beseitigung von Tumoren durch Wärme vorgeschlagen. Die therapeutische Wärme wird mittels der Applikation eines magnetischen Materials und der anschließenden Exposition in einem magnetischen Wechselfeld generiert. Die vorliegende Studie befaßt sich mit der *In-vitro*-Abschätzung der kritischen Hitzedosis ( $^{\circ}\text{C} \times \text{min}$ ) für eine zuverlässige Zerstörung von Tumorzellen sowie mit der Applizierbarkeit von entsprechenden Hitze-Dosen durch die magnetische Thermoablation in einem *in vivo* experimentellen Tumormodell.

**Methoden:** Humane Adenokarzinomezellen (BT-20) wurden auf Temperaturen zwischen 37 und 62  $^{\circ}\text{C}$  (Wasserbad) für 4 min exponiert und weitere 24, 48 und 72 Stunden vor der kolorimetrischen Zellvitalitätsbestimmung inkubiert. BT-20 Zellen wurden in 5 immundefizienten Mäusen implantiert.  $12 \pm 3$  mg Magnetit per 300  $\text{mm}^3$  Tumorgewebe wurden appliziert und die Tiere in einem magnetischen Wechselfeld (Amplitude: 6.5 kA/m, Frequenz: 400 kHz) für 4 min ausgesetzt. Dabei erfolgten Temperaturmessungen im Rektum und in der Tumorperipherie. Die Fläche zwischen der zeitabhängigen Temperaturkurve und des nativen Temperaturspiegels (ohne Wärmebehandlung) wurde als die applizierte Hitzedosis (DHD) definiert.

**Ergebnisse:** Die kritische DHD für die Inaktivierung von Tumorzellen lag zwischen  $47 \pm 2 \text{ }^{\circ}\text{C} \times \text{min}$  ( $51 \text{ }^{\circ}\text{C}$ ) und  $61 \pm 2 \text{ }^{\circ}\text{C} \times \text{min}$  ( $55 \text{ }^{\circ}\text{C}$ ) und ist auf die abnehmende Zellvitalität mit zunehmender Inkubationszeit nach der Wärmebehandlung zurückzuführen. Die in Tumoren applizierte Hitzedosis reichte von  $197 \pm 29 \text{ }^{\circ}\text{C} \times \text{min}$  und  $106 \pm 4 \text{ }^{\circ}\text{C} \times \text{min}$  (mittlere Temperaturen am Ende der Wärmebehandlung:  $84 \pm 3 \text{ }^{\circ}\text{C}$  und  $59 \pm 0 \text{ }^{\circ}\text{C}$ ) für die distale und proximale Tumorperipherie. Die rektalen Temperaturen stiegen um etwa  $3 \text{ }^{\circ}\text{C}$  während der Wärmebehandlung an.

**Schlussfolgerungen:** Der Vergleich der DHD aus den In-Vitro- und In-Vivo-tierexperimentellen Untersuchungen verdeutlichen die Möglichkeit für eine zuverlässige Zerstörung von Tumorzellen mittels der vorgeschlagenen Methode.

**Schlüsselwörter:** magnetische Thermoablation, Krebstherapie, Erwärmung, kritische Temperatur, Eisenoxid

## Introduction

During the last decade therapeutic heating – preferentially cancer therapy - has become of increasing interest resulting in two basic techniques called “hyperthermia” and “thermoablation”. Hyperthermia has been used as an adjuvant modality to classical oncological procedures, since it was shown to intensify the efficacy of radiation and/or chemotherapy. In this technique temperatures between 40 and  $45 \text{ }^{\circ}\text{C}$  are applied at the target for time periods between 30 and 60 min (1) that induces almost reversible cell damage. On the contrary, thermoablation procedures operate with temperatures higher than  $50 \text{ }^{\circ}\text{C}$ , resulting in tissue necrosis, coagulation or carbonization - depending on the used temperature.

For both techniques internal or external heating sources have been applied. But one of the major associated problems was the selective focussing and control of the heat deposited in the tissues. Therefore, basing on the experiments of Gilchrist et al. (2) a method called “magnetic thermoablation” was proposed. The procedure consists of a selective accumulation of magnetic material (iron oxide, i.e. magnetite) within the target and the exposure of the tumor containing organ to an alternating magnetic field. In this way, the magnetic materials absorb energy from the magnetic field and convert it into heat, that is used to eliminate the tumor. In particular, tumors in organs with a good accessibility to magnetic fields, like the breast, head, neck and limbs, could be preferentially treated.

Previous investigations demonstrated the basic feasibility of the proposed minimal-invasive method (3;4) and that the exposure of parts of the body with a diameter up to 15 cm, may be tolerable, particularly if using short exposure

times (several minutes) to AC magnetic fields with a frequency of 400 kHz and an amplitude of 6.5 kA/m.

When maintaining the duration of treatment as short as possible, the adaptation of heating to adequate temperatures is the major goal to be attained. Even though the necessary time-dependent temperature dosages to be applied for hyperthermic treatments of tumors have been widely investigated, in the thermo-abative treatments of tumors a critical temperature for cell destruction of  $56 \text{ }^{\circ}\text{C}$  is assumed, but no systematic data are available. To our knowledge, only one investigation showed that acute lethal damages can be induced in cells by the aid of heating to temperatures between 50 and  $60 \text{ }^{\circ}\text{C}$  (5) for a few minutes. Other investigations deal with the chemical processes of thermal injury (6,7, 8). Nevertheless, in view of a refined regulation of the heat focus at the target, the relatively wide critical temperature range has to be further characterized by consideration of dynamic cytotoxic effects of heating.

Furthermore, with respect to the proposed method, there is also lack of detailed information on whether ethal heating dosages could be magnetically deposited at the target using short exposure times to the magnetic field (4 min).

Therefore, in the present study the critical heating dosages for a reliable tumor cell destruction were investigated *in vitro* and compared with those dosages that were induced by magnetic thermoablation in tumor bearing mice. In order to quantify the temperature treatments with respect to time, we introduced the expression “deposited heat dosage” (DHD) being the area under the time-dependent temperature curves during treatments.

## Materials and Methods

### Water bath heating of tumor cells in culture

Asynchronously growing human breast adenocarcinoma cell lines (BT-20, Deutsches Krebsforschungszentrum: Heidelberg, Germany) were cultivated in exponential monolayer growth by the use of MEM containing 10 % (v/v) fetal calf serum (Life Technologies: Karlsruhe, Germany) and 1 mM sodium pyruvate (Gibco-BRL: Karlsruhe, Germany). All cultures were routinely checked for mycoplasma contamination.

Cell suspensions ( $1 \times 10^5$  cells in 1 ml DMEM) were adapted to 37 °C for 5 min using a water bath (water bath "a"). The water-bath heating treatments *per se* were performed by the introduction of samples for 4 min in an additional water bath "b" controlled by a precision thermostat kept at 37, 47, 51, 55, 57 and 62 °C. The temperatures within the cell suspension were recorded using thermocouples as already described (4).

Heated and non-heated (control) cells were seeded on micro well dishes (1000 or 2000 cells per  $0.36 \text{ cm}^2$ ). After 24, 48 and 72 h of in-

cubation under standard conditions, the cell viability was determined photometrically by the production of a colored formazan product in metabolically active (living) cells (9). Survival rates (v) were calculated by the formula:

$$v [\%] = (t \times 100 [\%]) : k ,$$

where  $t$  means the absorbance at 450 nm of heated and  $k$  of non-heated control cells. All numerical data were expressed as mean  $\pm$  standard error of the mean.

### Magnetic heating of tumors in mice

5 female immunodeficient (SCID) mice (Institut für Versuchstierkunde des Klinikums der F.S.U. Jena, Germany) weighing approximately 23 g were group-housed in solid floored caging (Ehret: Berlin, Germany). Sawdust (Altromin Tierlabor Service: Lage, Germany) was used as bedding. Room temperature was controlled at  $21 \pm 2^\circ\text{C}$ . A 10h:14h light-dark cycle was maintained. Animals received a commercial pelleted diet (Altromin Tierlabor Service: Lage, Germany) and water ad libitum.

A bilateral tumor implantation (lateral abdomen) was performed using 0.35 ml MEM containing  $2 \times 10^6$  cells. Approximately 6 weeks

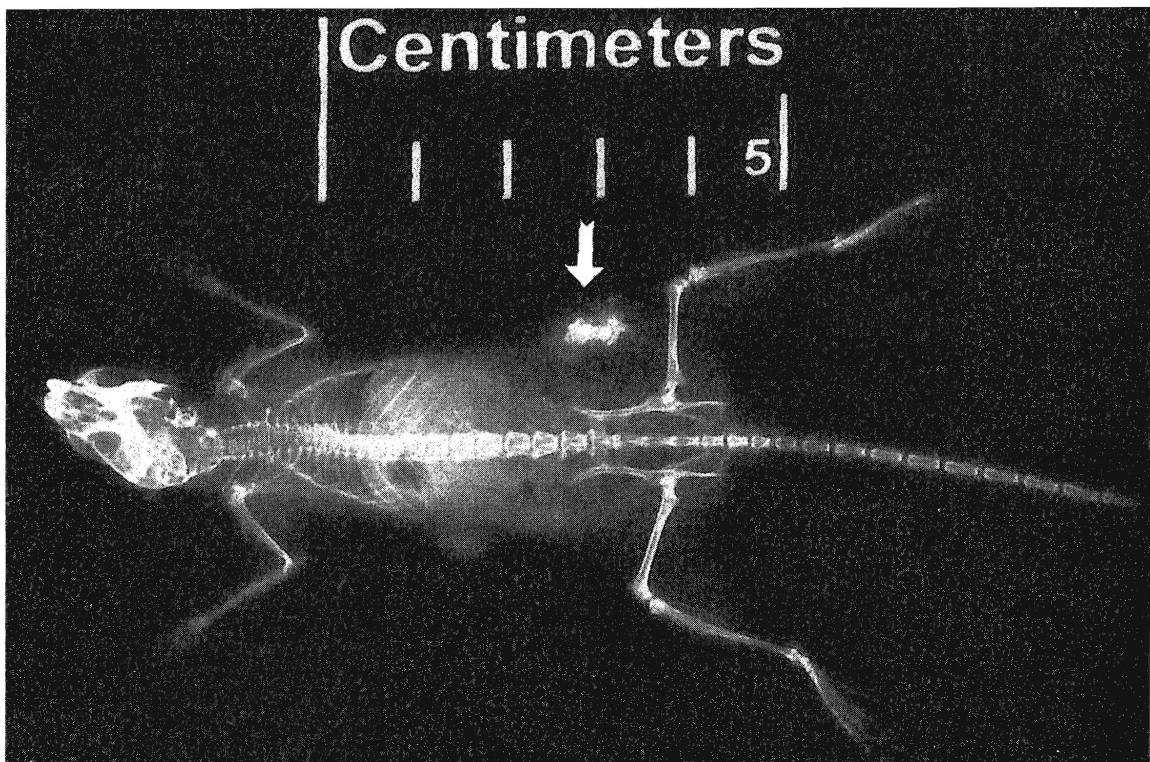



Figure 1.  
Radiography of a SCID mouse with bilaterally implanted tumors (BT-20 cells) in the lateral abdomen. The upper tumor was centrally loaded with iron oxide particles (arrow)

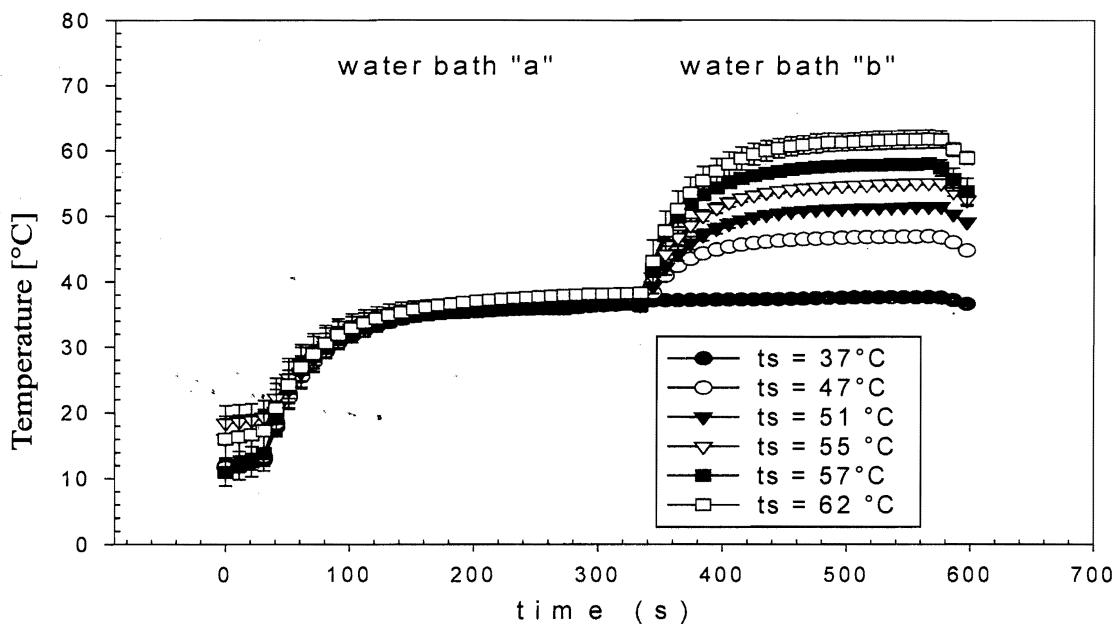



Figure 2.

Time-dependent temperature courses during water bath treatment of cells. The temperature of cell suspensions was adjusted to 37 °C (water bath "a"). Temperature treatments were carried out introducing the samples for 4 min into water bath "b" with temperature settings (ts) controlled by a precision thermostat.

after the tumor implantation the experiments were started. Tumor volumes were calculated to be of  $1005 \pm 331 \text{ mm}^3$  as determined using the formula  $V = \pi/6x(\text{product of 3 principal diameters})$  according to Steel (10). All experimentation had been performed according to the regulations of the European Community.

Prior to experiments animals received anesthesia (per kg body weight: 0.5 mg medetomidin, 5 mg midazolam and 0.05 mg fentanyl). Approximately 50 microL of a magnetic fluid sample (colloidal suspension of magnetite particles; Ferrofluidics, Nürtingen, Germany) was intratumorally injected into the tumor center

Table 1

Mean survival rates (%) in dependence on time after heating cells in a water bath with temperature settings controlled by a precisionthermostat. DHD: deposited head dosage as estimated by the area between the time dependent temperature curves and the temperature level of 37°C between beginning and ending of treatment.

| Water bath temperatures<br>[°C]<br>and DHD [°C x min] | Mean survival rates (%) of BT-20 cell population |         |         |
|-------------------------------------------------------|--------------------------------------------------|---------|---------|
|                                                       | 24 h                                             | 48 h    | 72 h    |
|                                                       | of incubation after heating treatments           |         |         |
| 37 ± 0 / 0 ± 0                                        | 113 ± 5                                          | 101 ± 4 | 110 ± 7 |
| 47 ± 0 / 32 ± 2                                       | 79 ± 5                                           | 50 ± 8  | 57 ± 9  |
| 51 ± 0 / 47 ± 2                                       | 50 ± 7                                           | 16 ± 3  | 12 ± 8  |
| 55 ± 0 / 61 ± 2                                       | 14 ± 4                                           | 0 ± 0   | 0 ± 0   |
| 57 ± 1 / 71 ± 2                                       | 0 ± 0                                            | 0 ± 0   | 0 ± 0   |
| 62 ± 1 / 85 ± 7                                       | 0 ± 0                                            | 0 ± 0   | 0 ± 0   |

(Figure 1). The amount of magnetite per 300 mm<sup>3</sup> tumor tissue was of  $12 \pm 3$  mg.

Mice were placed in the center of a magnetic field applicator consisting of a circular coil (diameter: 9 cm). The exposure to the AC magnetic field (amplitude: 6.5 kA/m; frequency: 400 kHz) lasted for 4 min and simultaneously rectal temperatures as well as temperatures of the distal and proximal tumor periphery were measured using thermocouples.

The intratumoral magnetite deposition and the position of the thermocouples were monitored by radiography.

#### Calculation of deposited heat doses (DHD)

The deposited heat dosage at the target were calculated by estimating the area A between the time-dependent temperature curves and the temperature level without heating.

#### Results

The time-dependent temperature courses during the water bath treatments of cells show a good temperature alignment to 37 °C during exposure in water bath "a" and distinctive temperature increases until 40 s after exposure in water bath "b". With ongoing treatment time the temperature saturates (Figure 2).

Depending on the water bath "b" temperature settings the deposited heat doses ranged from  $32 \pm 2$  °C × min (temperature setting of 47 °C) and  $85 \pm 7$  °C × min (temperature setting of 62 °C).

The cell survival rates were dependent on the incubation time after heating (Tab. 1) revealed stable values after exposure to temperatures of 37 °C. There was a tendency for cell viability recuperation when heating at 47 °C and decreasing rates after incubation at 51 and 55 °C. Particularly, after 24 h of incubation, critical survival rates were observed after heating between 55 and 57 °C; longer incubation times (48 h and 72 h) lead to critical survival rates at temperatures between 51 and 55 °C. No survival rates were observed after heating of cells at temperatures higher than 57 °C.

Radiography showed a clear deposition of magnetite particles in the tumor center (Figure 1). The measured temperature curves in mice tumors were averaged over the 5 tumor bearing mice to give the curve (dots) in Figure 3 with the spread represented by the error bars. Starting with an intratumoral temperature of 23 °C the temperature courses at the tumor periphery were similar when compared to those of water bath heating at higher temperatures. For the distal and proximal tumor periphery, a mean

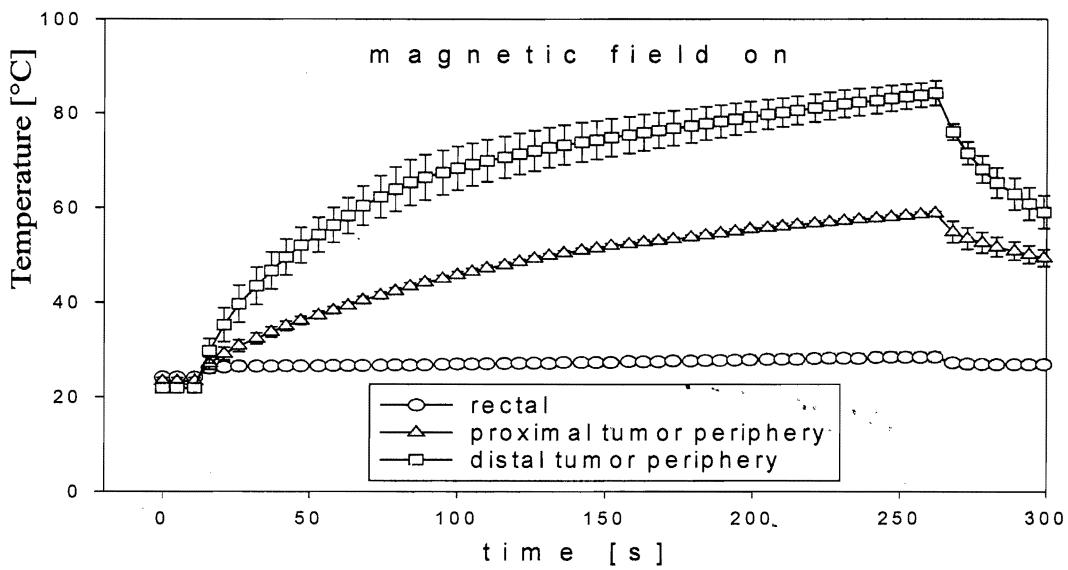



Figure 3.

Temperature courses at the distal and proximal tumor periphery and the rectum during exposure of 5 tumor bearing mice to an alternating magnetic field (frequency: 400 kHz; amplitude: 6.5 kA/m) for 242 s. Tumors were previously loaded with  $12 \pm 3$  mg magnetite per 300 mm<sup>3</sup> tissue. The error bars indicate the interindividual differences after tumor treatment in 5 mice

temperature of  $84 \pm 3$  °C and  $59 \pm 0$  °C, respectively, was measured at the end of tumor treatments. The corresponding DHDs were estimated to be of  $197 \pm 29$  and  $106 \pm 4$  °C x min, respectively.

The rectal temperatures increased from  $24 \pm 1$  °C at the beginning to  $27 \pm 0$  °C at the end of treatments.

## Discussion

The *in vitro* data revealed a significant correlation between the DHD and the cell survival rates. The heat doses induced by magnetic thermoablation in experimental tumors were fairly higher when compared to those generated by water bath exposure of cells.

According to the results concerning the heat-dose and time-dependent survival rates of water bath treated cells, the critical lethal heat dose to be deposited ranges between  $47 \pm 2$  °C x min (temperature setting of 51 °C) and  $61 \pm 2$  °C x min (temperature setting of 55 °C). The fact that the cytotoxic heating effect was intensified with continuing culture time after treatments could be explained by cell death through apoptosis, which is known to be a time-dependent cellular self-destruction program. In comparison, Heisterkamp et al. (5) found a critical temperature range between 50 and 60 °C (treatment time: 3 min) for tissue coagulation and cell death in tumor tissue samples. Their experimental conditions were similar to those in the present study. Nevertheless, the relatively broad temperature range can be explained by the fact that cell viability was determined immediately after heating.

In the question of the thermal injury, a detailed research on protein breakdown was performed (e.g. (6)), indicating a large variability for the temperature dependent coagulation of different cellular proteins (temperature range between 48 and 90 °C) (7, 8). Therefore, the current data suggest that cell viability is strongly related to the thermostability of several vital proteins.

One of the reasons for using the mitochondrial dehydrogenase activity as a criterion for measuring cell viability was that the widely known dye exclusion tests (e.g. trypan blue or eosin) are not suitable for measuring survival after application of high dosage thermotherapy, since interferences of membrane functions are can

occur. On the other hand, the mitochondrial dehydrogenase is a basic metabolic enzyme for maintenance of vital cell functioning. From the pathologic point of view, mitochondria are the first organelles reacting to lethal heating by swelling and crystolysis; the disintegration of polyribosomes and nuclear chromatin aggregation are later events (11).

The heat doses deposited into experimental tumors were significantly higher than the critical doses determined from *in vitro* investigations. The fact of different starting starting temperatures before heating should be kept in mind in comparing these two experiments. The area between 23 °C (animal experiments) and 37 °C (water bath experiments), respectively, and the time period of about 250 s leads to a heat dosage of about 60 °C x min. Distinctive magnetically induced heat spots could be generated in the tumor. The data suggest that similar tumor cell survival rates after heating could be obtained as observed *in vitro*. Therefore, by using the proposed procedure, sufficient heat could be deposited at the target in order to destroy tumor cells. For ethical reasons, it was not possible to study the tumor remission after treatments in living animals, since – in relation to the total animal body volume – the large heat spots induced on the lateral abdomen could also have damaged vital organs impairing the animal's quality of life.

Based on the central deposition of the magnetic material within the tumor, a bell shaped curve with a peak at the tumor center and decreasing temperatures towards the periphery can be expected. Therefore, the threshold heat doses (temperatures) should be applied at the tumor periphery in order to achieve a reliable tumor destruction.

In tumors in the breast, which is a low vascularized organ and mainly composed of insulating fat, a risk of fat necrosis is conceivable. This is known from other cancer ablation procedures, such as radiofrequency laser therapy. Such problems should not arise during magnetic thermoablative methods when considering the possibility of regulating the heat doses by a refined selection of iron oxide masses and magnetic field parameters (3, 4).

The observed differences between the deposited heat dosages at the distal and proximal tumor periphery result from differences of the

tumor surrounding media. The distal tumor periphery was surrounded by air having higher insulation features than the biological tissue at the proximal one. Furthermore, blood flow in the surroundings might have had additional influences on this relationship. Similar situations are possible if tumors are situated in the vicinity of large vessels leading to a shift of the intratumoral, bell shaped temperature curves as a result of blood flow induced thermal clearance.

The low basal tumor temperatures in animals before the beginning of treatments were recorded and ascribed to anaesthetic effects. Anesthesia was necessary during tumor treatments due to the fact that unpredictable traumatic side effects could occur on vitally organs underlying the subcutaneously implanted tumors. Therefore, it is possible that hypothermia could have influenced to some extend the intra-tumor temperature measurements. These relationships could have led to higher temperatures in the tumor during ablation than would be possible if animals were perfusing normally with rapidly circulating blood acting to reduce peak temperatures.

The cause of the pronounced inter-individual variations of the temperature data (error bars in Fig. 3) is thought to be the result of inter-individual variations of the magnetite deposition morphology at the tumor center being influenced by the diverging texture of the tumor itself.

It should be noticed that the findings are based on one tumor model. It is very likely that other experimental models will exert similar heating effects, since the cytotoxic potential of heat at higher temperatures (over 50 °C) is not confined to tumor cells.

In summary, the present study demonstrated that the critical lethal heat dose for a reliable destruction of tumor cells ranges between  $47 \pm 2$  °C x min (temperature setting of 51 °C, heating time: 4 min) and  $61 \pm 2$  °C x min (temperature setting of 55 °C, heating time: 4 min) and that magnetic thermoablation is an effective and potent method for the localized application of therapeutic heat.

#### Acknowledgements

The authors thank to Mrs. Doreen Schröder for excellent technical assistance.

#### References

- 1.) Schulz O, Vogel E, Bernhardt JH. Neue Entwicklungen der Hyperthermie. *Deutsches Ärzteblatt* 1998; 95: A1612 - A1615.
- 2.) Gilchrist RK, Shorey WD, Russel M, Hanselman RC, de Peyster FA, Yang J, et al. Effects of electromagnetic heating on internal viscera: a preliminary to the treatment of human tumors. *Annals of Surgery* 1965; 161: 890-896.
- 3.) Hergt R, Andrä W, d'Amby CG, Hilger I, Kaiser WA, Richter U, et al. Physical limits of hyperthermia using magnetite fine particles. *IEEE -Transactions on Magnetics* 1998; 34: 3745-3754.
- 4.) Hilger I, Hergt R, Kaiser WA. Effects of magnetic thermoablation in muscle tissue using iron oxide particles. An *in vitro* study. *Investigative Radiology* 2000; 35: 170-179.
- 5.) Heisterkamp J, van Hillegersberg R, Uzermans JNM. Critical temperature and heating time for coagulation damage: implications for interstitial laser coagulation (ILC) of tumors. *Lasers in Surgery and Medicine* 1999; 25: 257-262.
- 6.) Ungar G, Damgaard E. Protein breakdown in thermal injury. *American Journal of Physiology* 1954; 87: 378.
- 7.) Lepock JR, Frey HE, Ritchie KP. Protein denaturation in intact hepatocytes and isolated cellular organelles during heat shock. *The Journal of Cell Biology* 1993; 122: 1267-1276.
- 8.) Ritchie KP, Keller BM, Syed KM, Lepock JR. Hyperthermia (heat-shock) induced protein denaturation in liver, muscle and lens tissue as determined by differential scanning calorimetry. *International Journal of Hyperthermia* 1994; 10: 605-618.
- 9.) Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. *Journal of Immunologic Methods* 1983; 65: 55-63.
- 10.) Steel G. Growth rate of tumors. In: G Steel, ed. *Growth kinetics of tumors: Cell population kinetics in relation to the growth and treatment of cancer*. Oxford, United Kingdom: Clarendon; 1977. p. 5-55.
- 11.) Riede UN, Schaefer HE, Rohrbach R, Müller H. Zellpathologie. In: UN Riede and HE Schaefer, eds. *Allgemeine und spezielle Pathologie*. Stuttgart: Georg Thieme Verlag; 1995. p. 8-48.

#### Corresponding author:

Dr. Ingrid Hilger,

Institut für Diagnostische und Interventionelle Radiologie des Klinikums der Friedrich-Schiller-Universität Jena,  
Bachstraße 18, D-07743 Jena, Germany.  
Email: Ingrid.hilger@med.uni-jena.de

(Manuscript received on 09.07.2001, accepted on 20.07.2001)

# 29<sup>th</sup> Annual Meeting of the American Academy of Thermology in Auburn, June 11-24, 2001: Abstracts

## INTERPRETATION OF THERMOGRAMS DURING INVESTIGATIONS OF THERMAL PHYSIOLOGY

J.M. Mahloy<sup>1</sup>, J.W. Smith<sup>1</sup>, D.D. Pascoe<sup>1</sup>, R.C. Purohit<sup>2</sup>

<sup>1</sup>Department of Health and Human Performance;

<sup>2</sup>Department of Clinical Sciences;

Auburn University, AL 36849. USA

Infrared (IR) thermography provides both medical clinicians and physiologists with a valid means of measuring regional skin temperature differences. However, varying the settings of a thermal processor can dramatically alter a thermogram's appearance.

The purposes of this presentation are to discuss issues related to the testing environment, patient or subject, and thermal processor settings that can influence the appearance and subsequent interpretation of a thermogram in clinical and physiological research settings. In particular, one must account for the measurement accuracy & range of temperatures represented in an image to properly interpret a thermogram.

When accounting for these factors, one must consider that increased measurement accuracy does not necessarily equate to increased clinical or research-based significance. Also, environmental factors such as radiant heat, humidity and wind can affect imaging. Further, vasoactive factors such as nicotine and caffeine use by subjects can alter thermal images.

In addition to accounting for thermography System settings, one must control for the effects of environmental and vasoactive factors and ensure adequate subject equilibration prior to imaging to ensure valid and reliable JR thermographic imaging.

## THE INFLUENCE OF PROTECTIVE BARRIER CLOTHING ON THERMAL SKIN RESPONSES

J. W. Smith<sup>1</sup>, J. M. Molloy<sup>1</sup>, D. D. Pascoe<sup>1</sup>, R. C. Purohit<sup>2</sup>

<sup>1</sup>Department of Health and Human Performance;

<sup>2</sup>Department of Clinical Sciences;

Auburn University, AL 36849. U.S.A.

The purpose of this investigation was to determine the influence of protective barrier suits (PBS) and cooled vests on the skin/core temperatures of subjects during recovery after exercise. Subjects were recreationally fit males (19-50 years old) who performed randomized work trials (PBS or PBS w/vest).

Hydroweave vest (Aquatex<sup>TM</sup>) was saturated with water (24°C). Rectal core and skin temperatures were measured during 30 minutes of walking on a motorized treadmill (3.5 mph, 6% grade) and 15 minutes of passive recovery (no PBS or vest). Exercise was performed in a controlled work environment (30°C, 50-55% relative humidity). Recovery was measured in a cooler recovery temperature (25°C, 35-40% relative humidity). Thermal images (Bales TIP 50) were taken of the chest and head prior to exercise, immediately following the exercise, and at 5, 10, and 15 minutes postexercise without vest or PBS. Environmental conditions inside the suit were recorded throughout the trial.

Skin temperature was cooler during PBS-vest trials for the first 15 minutes of exercise. Thereafter no difference in skin temperature was observed for vest and no vest trials. Core temperature was significantly reduced during the last 10 minutes of the exercise bout. During recovery, skin temperature was increased and core temperature was lower during the trials where subjects had worn the cooling vest compared to no-vest recovery.

The increase in skin temperature during recovery demonstrates greater vasodilation in the skin, thereby allowing for greater heat dissipation from the core temperature to skin and skin to environment.

## INFRARED DETECTION OF HUMAN REGIONAL SKIN TEMPERATURES AT VARYING ENVIRONMENTAL CONDITIONS

D.D. Pascoe, J.C. Llanos, J.M. Molloy,  
J.W. Smith

Department of Health and Human Performance;  
Auburn University, AL 36849 U.S.A.

The purpose of this investigation was to determine the variance in regional skin temperatures at 20°, 30°, and 40°C environmental conditions using non-invasive, non-contact infrared thermography. Thirty college-aged participants (15 male, 15 female), wearing minimal clothing, passively stood in an environmental chamber for 15 minutes for equilibration prior to obtaining frontal and posterior infrared thermal images (Bales TipSO).

The trials were performed at the same hour of differing days to eliminate any variance due a previous trial or thermal changes due to circadian rhythms. Subjects were pre-screened for contraindicated medical conditions. One hour prior to testing the subjects refrained from food consumption, exercise, smoking, and caffeine use. The torso regions were defined as: right scapula, left upper chest, left lower back, and right abdomen. Peripheral regions were defined as: forehead, lower occiput, right upper arm, left lower arm, left hand, right anterior thigh, left posterior thigh, right anterior leg, left posterior leg. These sites are commonly used in physiological studies to determine mean skin temperatures from mean-weighted formulas.

The high, mean, and low temperatures from all regions were statistically different for all environmental conditions. The range of temperatures within each region was significantly greater at 20°C when compared to 30° or 40°C. However, the ranges in skin temperatures for the peripheral regions (not torso) were significantly greater during the 30° and 40°C environmental trials.

Unlike thermal probes that measure only one location, non-contact JR thermography can accurately assess multiple thermal skin responses from heterogeneous distributions of skin temperatures within body regions.

## THERMOGRAPHY IN WORKERS' COMPENSATION

Srini Govindan,

Wheeling, W V, USA, 26003;  
American Academy of Thermology

The office of the president of the American Academy of Thermology contacted the Workers' Compensation Commissioners of each state regarding approval for the use of Thermography in the management of patients with RSD/CRPS. The following States replied indicating that thermography was accepted in the workup of the patient: Florida, Iowa, Maryland, Massachusetts, Minnesota, Mis-

sissippi, Missouri, Montana, Nebraska, New Jersey, Oklahoma, Oregon, and Wisconsin.

CPT codes mentioned were 93760 Cephalic and 93762 Peripheral. Set rates for Massachusetts are \$260.00 each. Approval was based on medical necessity, choice of the treating physician or referred by specialist, not singularly useful and on case by case basis, should be appropriate and necessary, may be used adjunct to physical exam and not reimbursed separately from the office visit, at the recommendation of medical providers, Individual Judge to decide based on evidence submitted by modern science, Judge to decide if in dispute, subject to contest by the opposing physician, person performing the procedure must be practicing within the scope of his/her license and must be adequately trained.

Thermography has acceptance at this time in patients with RSD/CRPS. American Academy of Thermology members who are Certified by the American Board of Thermology have the opportunity to work with their state workers' Compensation commissioners to try to implement use of this technology for diagnosis of RSD/CRPS, in the follow up of treatment and correlate with prognosis.

### Reference:

1. Govindan S, Katims J.J., Thermography in Disability Medicine. European Journal of Thermology 1998, 8(3): 111-112.

## COMPUTER ANALYSIS OF THERMOGRAMS OF THE VERTEBRAL COLUMN

Henry Konik<sup>2</sup>, Andrzej Wall<sup>1</sup>,  
Robert Koprowski<sup>3</sup>, Zygmunt Wróbel<sup>3</sup>

<sup>1</sup> Akademia Medyczna we Wrocławiu, Katedra i Klinika Ortopedii

<sup>2</sup> Oddział Ortopedyczno-Urazowy Szpitala im. Sw. Józefa w Mikolowie

<sup>3</sup> Instytut Informatyki Uniwersytetu Śląskiego, Zakład Komputerowych Systemów Sterowanych.

The thermographic examination was done with the camera AGEMA 470 in a chamber with standard conditions of humidity (60%) and temperature (20 to 22°C). Air stream convection in the chamber was restricted and the influence of any heat source was eliminated.

The camera was placed in about 1 meter distance from the patient, who was standing with his back in front of the camera. The thermograms obtained after examination were analyzed using the Real Time Workshop and Image Processing computer programs, both included in the Matlab environment.

The program enables:

- To detect in a manual or automatic way the spinal shape on X-ray picture.
- To locate the shape of the spine on a thermogram
- To calculate the average temperatures distribution on both sides of a certain region of the back..

On the basis of data mentioned above, the diagrams of paravertebral regions temperatures (thermograms) were obtained. The analysis of these diagrams allowed finding some interesting relationships between the temperature and the deformation angle (measured by the Cobb's method) in children with idiopathic scoliosis.

### MONITORING THE ANAESTHETIC NEURAL BLOCKADE: A CASE REPORT

R. Bettaglio, C. Bonezzi, L. Demartini, D. Miotti, L. Paulin, M. Barbieri

Department of Pain Therapy and Palliative Care, Maugeri Foundation, via Ferrata n.8, 27100 Pavia, Italy.

Iatrogenic neuropathies are frequently correlated with surgical treatment. The primary cause of chronic pain induced by surgery is direct or indirect nerve injury, either acute (caused by section or ischemia) or delayed (for adhesion and entrapment). Spinal and supraspinal mechanisms are secondary involved.

A 56 years old man came to our out-patient clinic complaining about pain in the left hand. The pain began after palmar aponeurotomy for Dupuytren syndrome of the ring finger. Three months later, the patient had to be operated again (adhesiotomy and neurolysis of the fourth interdigital nerve of the left hand) because of persisting pain.

The symptomatology was characterized by spontaneous burning pain in the little and ring finger with, touch evoked allodynia in the scar area, cold sensation in the fifth finger and disturbed sleep. Neurological evaluation detected hyposthesia and hypoalgesia of the fifth finger and of the ulnar side of the ring finger, motor impairment of the little finger. Neurophysiologic data were compatible with neuropathy of nervi digitales nervi ulnaris.

Thermographic patterns showed hypothermia of the left hand ulnar area. The anaesthetic blockade of the ulnar nerve at the wrist was monitored with thermography. During the blockade the hypothenar area and the ring finger became warmer while the little finger remained cold. The pain disappeared totally. Anaesthetic neural blockade determined a warm area due to sympathetic pathways block. The cold area found in the patient is probably due to complete nerve lesion and denervation hypersensitivity. Monitoring temperature variations during anaesthetic blockade can be useful to understand which kind of fibers are affected by the lesion.

### COMPLEX REGIONAL PAIN SYNDROME

Srini Govindan,

American Academy of Thermology, Wheeling, WV, USA, 26003

Complex regional pain syndrome (CRPS) is of two types, 1 and 2. (1) CRPS 1 is a pain syndrome that usually develops after an initiating noxious event, is not limited to the distribution of a single peripheral nerve, and is apparently disproportional to the incit-

ing event. It is associated at some point with evidence of edema, changes in skin blood flow, abnormal sudomotor activity in the region of the pain, allodynia, or hyperalgesia. The site is usually the distal aspect of an affected extremity, or has a distal to proximal gradient. CRPS II replaces the term causalgia and requires demonstrable peripheral nerve injury (2).

Thermography observations on neuropathic pain indicate the role of neural impulse activity on microcirculation and arteriovenous anastomoses (AVAs) (3). Blair et al. found CGRP to be increased in CRPS (4). Vasoactive peptides from a remote site can also induce prolonged changes in vasomotion of the AVAs. Regional blood flow abnormalities are found in CRPS (6). There is impairment of oxygen/ metabolism during progression of CRPS (7). Birklein et al documented increase in skin lactate in CRPS (8)..

In the diagnosis of CRPS /RSD (9 ,10) baseline temperature asymmetry or stress infrared telethermography has been documented to be useful. Mufson 1 stated that the effect of sympathetic block is on the arteriovenous anastomoses". Thermography images neuropeptide sensitive regional microcirculation /arteriovenous anastomoses and is helpful in the diagnosis and monitoring the effect of treatment in patients with CRPS (12).

### References:

- 1.) Rowbotham M.C., Editorial: Complex regional Pain syndrome Type 1 (reflex sympathetic dystrophy) Neurology 1998, 51: 4-5.
- 2.) Stanton-Hicks M, Janig W, Hassenbusch S, et al. Reflex Sympathetic dystrophy: Changing concepts and taxonomy. Pain 1995; 63: 127-133.
- 3.) Bennett GJ, Ochoa JL. Thermographic Observations on Rats with Experimental Neuropathic Pain. Pain 1991; 45(1): 6 1-7.
- 4.) Blair, Chinthagada M, et al. Role of Neuropeptides in Pathogenesis of Reflex Sympathetic Dystrophy. Act Orthop Belg 1998; 64:448-45 1.
- 5.) Molyneux GS, Haller CJ, et al. The Structure, Innervation, and Location of Arteriovenous Anastomoses in the Equine Foot. Equine Vet J 1994 Jul; 26(4): 305-12.
- 6.) Kurvers HA, Jacobs MJ, et al. Reflex Sympathetic Dystrophy: Evolution of Microcirculatory Disturbances in burns. Pain 1995; 60:333-340.
- 7.) Van der Laan L, et al. Complex Regional Pain Syndrome Type 1 (RSD). Neurology 1998; 51:20-25.
- 8.) Birklein F, Weber M, Neundörfer B. Increased 5km Lactate in Complex Regional Pain Syndrome: Evidence for Tissue Hypoxia Neurology 2000, 55:1213-1215.7.
- 9.) Blair SJ, Bruehl S, Lubenow, TR, et al. Validation of Thermography in the Diagnosis of Reflex Sympathetic Dystrophy. Clin J Pain 1996. 12:: 316-25.
- 10.) Gulevich SJ, Conwehl TD, et al. Stress Infrared Telethermography is Useful in the Diagnosis of Complex Regional Pain Syndrome, Type 1 (Formerly Reflex Sympathetic Dystrophy). Chin J Pain 1997 Mar; 13(1): 50-9.
- 11.) Mufson I, Responses of the abnormal arterial circulation to various stimuli, as studied by the use of radioactive sodium. Annals of Internal Medicine 1951, 34: 428-441.
- 12.) Govindan S., Microcirculation Pathophysiology in Chronic Regional Pain Syndrome; Thermology international, 2001, 11: 85-86

## THE ANALYSIS OF THERMOGRAMS IN CHILDREN WITH IDIOPATHIC SCOLIOSIS

Henry Konik<sup>2</sup>, Andrzej Wall<sup>1</sup>,

Robert Koprowski<sup>3</sup>, Zygmunt Wróbel<sup>3</sup>

<sup>1</sup>Akademia Medyczna we Wrocławiu, Katedra i Klinika Ortopedii

<sup>2</sup>Oddział Ortopedyczno-Urazowy Szpitala im. Sw. Józefa w Mikołowie

<sup>3</sup>Instytut Informatyki Uniwersytetu Śląskiego, Zakład Komputerowych Systemów Sterowanych.

The study was conducted in a population of 403 children divided into 2 groups:

I.The control group of 164 healthy subjects

II.Re experimental group of 239 subjects with idiopathic scoliosis

The experimental group included 2 subgroups of subjects in dependence of the spinal deformation and 4 subgroups with different levels of deformation (measured by Cobb's method). Other division was made in respect to the treatment options (with surgery or without surgery).

In the control group, solely the basic orthopedic examination and thermal imaging of the spine was performed. In the experimental group a radiological examination (X-ray image) was also performed.

Conclusions:

1.In the control group, the left and right paravertebral regions presented with a significant symmetry of temperature distributions.

2.In scoliotic children the level of the spinal deformation is correlated with temperature changes in distinct paravertebral area.

3.Thermal imaging is useful for evaluation of the efficacy of surgical treatment for scoliosis .

4. Thermography may be a valuable method in screening for spinal deformation in children and adolescents.

## THE THERAPEUTIC ROLE OF THERMOGRAPHY IN THE MANAGEMENT OF PAIN

H. Hooshmand,

Neurological Associates Pain Management Center, Vero Beach FL 32960

Thermography has been used mainly as a diagnostic tool. The therapeutic utilization of this test is even more useful in clinical practice. Whereas standard diagnostic tools such as EMG, NCV, MRI, or CT provide information regarding somatic (non sympathetic) nervous system, thermography provides therapeutic information regarding sympathetic nervous system dysfunction. This exclusive information is due to the fact that thermography measures the function of thermosensory C Fibers in the wall of the blood vessels, which cannot be measured by standard tests mentioned above.

Thermography guides the clinician to diagnose and treat CRPS, electrical injury, and repetitive strain

injury (RSI). In addition, thermography helps to rule out fibromyalgia, myofacial syndrome, carpal tunnel and tarsal tunnel syndrome sparing the patient of unnecessary surgery.

## OBTAINING GOOD IMAGES IN LESS THAN OPTIMAL CONDITIONS

Donna L. Harper

P.O. Box 2758,Roswell, New Mexico 88202;

Email:[vetmaps@plateautel.net](mailto:vetmaps@plateautel.net)

When the optimal facility or conditions are not available for doing infrared thermal imaging, the practitioner is faced with only two choices:

1.) forgetting the use of infrared imaging on the case; or 2.) using infrared in less than optimal conditions but nonetheless, acquiring useful images that provide reliable information.

Less than optimal conditions can be defined as:

- 1.) a compromised physical facility;
- 2.) less than optimal ambient temperatures;
- 3.) less than optimal help;
- 4.) difficult behavior of the patient;
- 5.) less than optimal preparation of the patient.

There are preparations that the practitioner can. recommend to make getting good images possible under these conditions.

Many of these problems can be avoided by proper planning and client education. Repeat clients are easy to work with because their previous experience using infrared imaging, helps them understand what is needed to get good images. To help new clients provide the best possible situation in which to work, proper questions should be asked the prospective client, and they should be instructed to make any necessary changes ahead of time. Taking the patient to a better facility, that the practitioner has used previously, is a good alternative if it appears that adequate changes cannot be made. Other problem factors can be handled by such actions as varying the time of day that images are taken, covering offending windows or doorways, taking along help trained by the practitioner, or other optimizing and preplanned approaches.

One of the most important things that should be remembered in these situations is to keep the less than optimal conditions in mind when interpreting the images. We do not want to overlook or misinterpret important artifacts that may have been created by any of these compromised imaging conditions.

## NORMAL AND ABNORMAL PATTERNS OF THE EQUINE FOOT

Donna L. Harper

P.O. Box 2758,Roswell, New Mexico 88202;

Email:[vetmaps@plateautel.net](mailto:vetmaps@plateautel.net)

In order to use infrared thermography as a diagnostic tool in equine medicine, we must first be able to recognize both normal and abnormal patterns of the

various anatomical areas of the horse's body. This paper addresses those patterns as found in the equine foot. The material was gathered from horses belonging to several breeds of performance horses, two breeds of racehorses, 3 breeds of draft horses, and individuals from a number of different breeds that were used only for non-athletic purposes.

My experience indicates that the best data can be obtained when I take a total of 12 specifically different images of the lower legs and feet. These 12 images are represented by 1 anterior image, 1 posterior image, 3 left side images, 3 right side images and 4 images of the soles of the 4 individual hooves. The anterior and posterior images are particularly helpful in evaluating the individual animal's preference of legs for weight bearing; this is quite helpful in determining which legs are involved in the pathological problems being sought by the infrared diagnostics being employed.

The paper presents normal examples of these 12 preferred images. It also presents abnormal examples of the anterior and posterior images as related to weight bearing and its significance in diagnosis. The paper concludes with images of individual pathological conditions such as those commonly recognized as sole bruises, subsolar abscesses, navicular bursa inflammation, navicular disease, acute and chronic laminitis, ringbone, and sidebone.

#### **THERMOGRAPHY STANDARDS FOR THERMAL IMAGING IN VETERINARY MEDICINE: QUALITY CONTROL**

Purohit RC<sup>1</sup>, Schumacher John<sup>1</sup>, Humburg Jay<sup>1</sup>, Wolfe DF<sup>1</sup>, Pascoe DD<sup>2</sup>

<sup>1</sup>Department of Clinical Sciences, College of Veterinary Medicine;

<sup>2</sup>Department of Health and Human Performance;

Auburn University, AL, USA

In most mammalian species, the body temperature is normally well controlled by its own metabolic state. The skin temperature is normally lower than that of internal tissues and depends not only on the metabolic state of the animal, but also various factors such as thermal conduction from heat sources within the body's vascular activity and just beneath the surface, heat losses due to evaporation, convection by air currents, or exchange of infrared radiation energy to the surroundings. Heat lost from the body by the exchanges of IR radiation with the surrounding is the basis of thermography. For this to occur there must be a temperature gradient. Thus, to obtain a reliable and meaningful diagnosis from a thermogram, one should consider the following:

1. The environmental factors which interfere with the quality of thermography should be minimized. The room temperature should be maintained between 21 to 26°C. Slight variations in some cases may be acceptable, but room temperature should always be cooler than body temperature and free from air drafts.

2. Thermograms obtained outdoors under conditions of direct air drafts, sunlight, and extreme variations in temperatures provide unreliable thermograms in which thermal patterns are altered. Such observations are meaningless.

3. When an animal is brought into a temperature controlled room, it should be equilibrated at least 20 minutes or more, depending on the external temperature from which the animal was transported. Animals transported from extreme hot or cold environments may require up to 60 minutes of equilibration time.

4. Other factors effecting the quality of thermograms are hair coat, exercise, sweating, body position and angle, body covering, systemic to topical medications, regional and local blocks, sedatives, tranquilizers, and anesthetics, vasoactive drugs, skin lesions, such as scars, surgically altered areas, etc.

The value of thermography is its extreme sensitivity to changes in heat and its ability to detect changes. Therefore, it is important to have well documented normal thermal patterns and gradients in a species prior to making any claims or detecting pathological condition.

#### **THERMOGRAPHY STANDARDS FOR THERMAL IMAGING IN VETERINARY MEDICINE: CHALLENGE TESTING**

Purohit RC<sup>1</sup>, Schumacher John<sup>1</sup>, Pascoe DD<sup>2</sup>

<sup>1</sup>Department of Clinical Sciences, College of Veterinary Medicine;

<sup>2</sup>Department of Health and Human Performance;

Auburn University, AL, USA

Three changes in the peripheral vascular system has significant effect on the skin surface temperature. Therefore, the use of thermography to evaluate skin surface thermal patterns and gradient changes require an understanding of the dynamic changes which occur in blood flow at systemic, peripheral, regional, and local levels. To enhance the diagnostic value of thermography, various conditions require challenge testing such as obtaining thermograms before and after exercise, response to heating and cooling of the skin surface, and response to various medications. Thermograms obtained before and after exercise provides evidence of reduced or enhanced inflammatory reaction, failure to enhance blood flow in some selective areas after exercise, etc. Similarly, obtaining thermograms after nerve blocks helps to evaluate neurovascular injuries.

The use of hot and/or cold treatment will enhance diagnostic value for vascular impairment. Therefore, a meaningful test protocol should be used in understanding the pathophysiological mechanisms for evaluation of skin surface temperature.

## A COMPARISON BETWEEN VISUAL AND REFLECTANCE SPECTROMETRIC ASSESSMENT OF ERYTHEMA AND THERMOGRAPHY IN THE ELUCIDATION OF DOSE-RESPONSE OF SKIN TO ULTRAVIOLET IRRADIATION IN PHOTO (CHEMO) THERAPY

K. Forde, C. Edwards<sup>2</sup>, R. Harding<sup>3</sup>, A. Anstey

<sup>1</sup> Departments of 'Dermatology, University of Wales

<sup>2</sup>College of Medicine, Cardiff, UK; Dermatology, Royal Gwent Hospital, Newport, Gwent, UK;

<sup>3</sup>Radiology, St Woolos Hospital, Newport, Gwent, UK.

Photoresponsive dermatoses such as psoriasis and eczema are often treated with ultraviolet therapy, either UV-A (360nm) with topical or systemic psoralen skin sensitisation (PUVA) or with UV-B (312nm) alone (UVB). Before each course of therapy, the patients' skin is tested for sensitivity by applying to separate small patches of skin an increasing series of 6 (PUVA) or 8 (UVB) UV doses, waiting for delayed erythema to develop then visually assessing the dose which elicits the first sign of faint erythema (the Minimal Erythema Dose, MED, for UVB or Minimal Phototoxic Dose, MPD, for PUVA). This dose determines the therapeutic dose regimen.

We studied the time course of evolution of erythema and the dose-response of skin in 11 UVB and 5 PUVA patients. We compared visual assessment of redness, single-pigment indices of erythema and melanin pigmentation and measurement of skin surface temperature using the AGA Thermovision 782 thermal camera with Btherm software.

No increase in pigmentation occurred. The erythema meter and visual assessment showed peak erythema occurred 72 hours post-irradiation for PUVA and UVB. Thermology did not show clear progressive changes in skin temperature. Both visual assessment and erythema meter demonstrated linear dose-responses. Thermology also showed a dose-response curve for group average skin temperature, but large inter-individual variability masked this. Small increases in skin erythema are detectable using the reflectance meter before they are visible.

Although thermology can show a dose-response of skin temperature to UV irradiation, the effects of underlying tissues and of day-to-day variation in individual body temperature cause poor contrast and excessive variability in measured skin surface temperature.

## HYPOTHENAR HAMMER SYNDROME

Richard L. Herrick, 1, JM Molloy<sup>2</sup>, R.C. Purohit<sup>3</sup>, D.D. Pascoe<sup>4</sup>.

<sup>1</sup>P.O. Box 4160, Opelika, AL 36849, USA

<sup>2,4</sup> Department of Health and Human Performance,

<sup>3</sup> Department of Clinical Sciences, Auburn University, AL 36849.

Hypotenar hammer syndrome, or ulnar artery thrombosis of the hand, due to repetitive injury to the ul-

nar artery was first described in the late 1800's. Frequently, the earliest symptoms may be intermittent numbness and/or tingling with no objective signs of any arterial involvement. Eventually, a thrombus is formed, and emboli can then be responsible for comparative vascular compromise, even necrosis of the fingers. Early diagnosis of the problem, before a large thrombus forms, may permit non-operative treatment, but complete recovery usually requires surgical reconstruction.

Causative factors include repetitive use of the ulnar aspect of the palm of the hand during various occupations and athletic endeavors. Previously, definitive diagnosis has always been obtained by arteriography; therefore, a non-invasive methodology, independent of significant operator dependence, i.e. ultrasonography, and/or considerable expense, i.e. MRI or MRA, would be extremely beneficial.

Herein presented is the 1st reported, documented case of hypotenar hammer syndrome utilizing thermographic findings, preoperatively (before surgical reconstruction) and sequential thermographic findings postoperatively. This study demonstrates the utility of thermography as a noninvasive accurate methodology for assisting in the diagnosis, as well as, providing a visually graphic objective display of the normalization of circulatory and neurological function postoperatively.

## EXTRACRANIAL CBF IMAGING CLINICAL IMPLICATIONS

Shri Govindan

American Academy of Thermology, Wheeling, WV, USA, 26003

To review literature and the methodology to image extracranial perfusion/CBF (Cerebral Blood Flow) with potential clinical application. In order to understand the mechanisms and the predisposition to migraine, the differences in the vascular responses between extracranial and intracranial arteries were studied with regard to histamine receptors (1), blood flow (2), vascular reactivity (3), and extracranial blood flow index (4).

Moskowitz (5) reported the relationship between neurotransmitters, the fifth cranial nerve, intra/extracranial blood vessels and migraine headache. Drummond and Lance used thermography to image and investigate extracranial vascular changes and the source of pain in migraine headache and recommended further studies to determine the degree of extracranial vascular involvement during migraine (6). The release of vasoactive peptide of trigeminal origin in the extracerebral circulation during migraine headache has been reported by Goadsby (7, 8). Clinical case studies also indicate differences in the vasoreactive properties of the external carotid artery in humans (9). Thermography images Extracranial perfusion/CBF.

Thermography criteria for extracranial CBF measurement, Criteria for extracranial CBF measurement and the Methodology have been published

(10-12). Recent update on cold patch(13), a biological marker for migraine indicates thermography images extracranial AVAs and has clinical / research applications in imaging the effect of anti-migraine drugs (14) and in monitoring microcirculation/AVAs in neurosurgical intensive care unit (15).

#### References:

- 1.)Edvinsson L, B.M., and Ch. Owman. A pharmacological comparison of histamine receptors in isolated extracranial and intracranial arteries *in vivo*. *Neurology* 1975; 25: 271-276.
- 2.)Welch K. M. A., Spira P. J., Knowles L. and Lance J. W. Simultaneous measurement of internal and external carotid blood flow in the monkey. An approach to the study of migraine mechanisms. *Neurology* May 1974, 450-457.
- 3.)Drummond P. D and Lance J. W. Extracranial vascular reactivity in migraine and tension headache. 1981; *Cephalgia* 1: 149-155.
- 4.)Sakai F, and Meyer J.S. Abnormal cerebrovascular reactivity in patients with migraine and cluster headache. *Headache* 1979; 19: 257-66.
- 5.)Moskowitz M.A., Reinhard, Jr., J.F., Romero J., et al.: Hypothesis. Neurotransmitters and the fifth cranial nerve: is there a relation to the headache phase of migraine? *Lancet*, 1979. 883-884.
- 6.)Drummond P. D., Lance J. W.: Extracranial Vascular Changes and the Source of Pain in Migraine Headache. *Ann Neurol* 1983 13:32-37.
- 7.)Goadsby P. J., Edvinsson L., Ekman R.: Release of Vasoactive Peptides in the Extracerebral Circulation & Humans and the Cat During Activation of the Trigeminovascular System *Ann Neurol* 1988; 26:
- 8.)Goadsby P. J., Edvinsson L., Ekman R: Vasoactive Peptide Release in the Extracerebral Circulation of Humans During Migraine Headache. *Ann Neurol* 1990; 28:183-187.
- 9.)Govindan S, Lamm S.: CO<sub>2</sub> reactivity in excessive daytime sleepiness. *Sleep Research*, 1992; 21, 341.
- 10.)Govindan S. Elrifai A. M. Thermography criteria for extracranial CBF measurement. *European Journal of Thermography* 1997; 7(3): 157-158.
- 11.)Govindan S., Ojo F., Govindan E. Criteria for extracranial CBF measurement. Abstract Book, Page 44: Mechanisms of cerebrovascular function and regulation. An Official Satellite Symposium of the XVIII International Congress on Cerebral Blood Flow and Metabolism. Williamsburg, Virginia. June 20-22, 1997.
- 12.)Govindan S. Extracranial Imaging of Trigeminovascular System. *Biomedical Thermology*. 1997; 17( 1): 32.
- 13.)Govindan S: Monitoring Cold Patch in Clinical Practice- An update. *Thermology International* 2000; 10/3: 140-141.
- 14.)Govindan S: To Image the effect of antimigraine drug on Trigeminovascular System. *European Journal of Thermology*, 1998, 8,3, 114-116.
- 15.)Govindan S, Elrifai A: Extracranial CBF Monitoring in Subarachnoid Hemorrhage, *European Journal of Thermology*, 1998, 8,3, 112-114.

#### AN INTRASPECIES REVIEW OF EXTREME THERMAL RESPONSES

Purohit RC<sup>1</sup>, Heath AM<sup>1</sup>, Navarre CB<sup>1</sup>, Pascoe DD

<sup>1</sup>Department of Clinical Sciences, College of Veterinary Medicine;  
<sup>2</sup>Department of Health and Human Performance;  
Auburn University, AL, USA

Our research has demonstrated the importance of recognizing both individual species and regional

differences in thermal patterns among animals that result from environmental stressors.

Some animal species will increase the thickness of their hair coats during colder months, and decrease the thickness during warmer months. In alpacas (lama), the ventral and perineal regions of the body are covered with a thinner hair coat than that on the dorsal surface. The thicker hair coat on the dorsal surface may increase the alpacas' risks of heat-related problems due to their reduced heat dissipation capabilities in hot humid climates. Thus, shearing the hair coats of alpacas may improve their thermoregulation responses in hot humid climates. We have demonstrated that shearing the dorsal region of the alpaca results in decreased right medial thigh temperatures (0.90° C cooler in the morning and 1.60° C cooler in the afternoon). Additionally, the scrotal and rectal temperatures were significantly lower in the sheared than in the non-sheared alpaca. In most breeds of horses, hair coat is thin. In our studies, hair clipping did not cause any significant change in thermal patterns or gradients. It is important to note that all animals equilibrated for at least 30 minutes in a room with a controlled temperature of 21 to 26° C. However, skin surface temperatures increased (2.0 to 2.5 °C) due to increased emissivity. This does not affect the diagnostic value of the thermogram.

The clinical condition of anhydrosis (non-sweating syndrome) increases the body temperatures of many animal species and human subjects when exposed to hot humid conditions. Therefore, thermographic studies of these subjects may provide different skin surface temperatures and thermal patterns when compared to those of normal subjects.

In conclusion, one must account for the effects of environmental stressors when performing thermographic studies under different climatic conditions. One must also account for the effects of anhydrosis when performing studies in hot humid environments.

#### REPRODUCIBILITY OF THE HOT SPOT COUNT IN PATIENTS WITH FIBROMYALGIA: AN INTRA- AND INTER-OBSERVER COMPARISON

K. Ammer <sup>1,3</sup>, B. Engelbert <sup>2</sup>, E. Kern <sup>2</sup>

<sup>1</sup> Ludwig Boltzmann Research Institute for Physical Diagnostics (Director: O.Rathkolb, MD), A-1140 Vienna, Austria

<sup>2</sup> Health Centre Andreasgasse (Head: O.Rathkolb, MD), A-1070 Vienna, Austria

<sup>3</sup> Thermal Physiology Lab, School of Computing, University of Glamorgan, Pontypridd, Wales, U.K

A high number of hot spots in thermograms of patients with fibromyalgia were reported previously. However, the inter- and intra-observer reproducibility of visually identified hot spots is unknown. Series of thermal images (9 images in each) of 20 patients diagnosed as fibromyalgia according to the ACR criteria were evaluated by two independent readers and the number of hot spots was deter-

mined. One investigator repeated the hot spot count a week after the first test. A hot spot was defined as a small area at least 0.5 degrees warmer than the surroundings. Only hot spots located nearby the sites typically checked for tenderness were accepted. The number and the location of hot spots in all three assessments were analyzed statistically.

The intra-rater reproducibility was moderate to fair (first run; number of hot spots: median 8.5, 5<sup>th</sup> percentile: 4.0, 95<sup>th</sup> percentile: 12.0; second run: median number: 7.5, 5<sup>th</sup> percentile: 3.1; 95<sup>th</sup> percentile: 12.0, Wilcoxon-test: 2-tailed p=0.53, correlation coefficient= 0.67), the inter-rater reproducibility was poor (number of hot spots: median: 10.0, 5<sup>th</sup> percentile: 7.0, 95<sup>th</sup> percentile: 13.0; Wilcoxon-test with first run: 2-tailed p=0.001, Wilcoxon-test with second run: 2-tailed p=0.0041; correlation coefficient with first run=0.29, with second run=0.21). The sites with the highest rate of disagreement were the occiput (intra-rater) and the anterior cervical spine (inter-rater), the highest agreement was found at the trapeze muscle (intra-rater) and the lateral epicondyle (inter-rater).

Improvement of the reliability of hot spot identification is needed and might be achieved by software assisted determination of hot spots.

#### **TREATMENT OF MYOFASCIAL PAIN SYNDROME AND FIBROMYALGIA, AND RELATED NEUROPATHIC PAIN: A NOVEL METHOD**

Fred F. Hafezi

P.O. Box 4429, Whittier, California 90607-4429;  
*Penetrating Radiation Via Photonic Stimulator*

The use of high intensity low frequency photonic infrared stimulation, a new state-of-the-art treatment of myofascial pain syndrome, (which is related to reflex sympathetic dystrophy), has been revolutionary in modulating, ablating or relieving the patient's neuropathic symptoms of edema, hot or cold sensations, erythema, hyperemia, dysesthesia, numbness localized or generalized muscle spasms, crouching posture and also increasing the range of joint motion along the spine.

This response has been observed in ninety percent of my private patients treated, personally, in the last two years.

This favorable response occurs almost immediately in association with rapid mood change from depressive, agitated alarm state to a cheerful, more normal attitude which happens, in my experience, in the majority of cases, within five or ten minutes of such treatment, if properly applied. My patients also report a progressive relief of insomnia after each treatment.

The effect of treatment may last one day to one week, but is cumulative on repeated applications, twice a week for twelve maximum treatments. Each treatment takes 15-30 minutes for effective relief.

#### *Indications:*

- 1.Chronic pain.
- 2.Acute pain.
- 3.Diabetic peripheral neuritis.
- 4.Arthrogfibrosis of knee.
- 5.Soft tissue work related trauma, or neuro-muscular injuries after car accidents.
- 6.Obvious florid reflex sympathetic dystrophy.
- 7.Post lumbar decompression laminectomy for periodic, severe, clonic musclespasms.
- 8.Indolent infections.
- 9.Post stroke patients with pain and rigid joints.
- 10.Multiple sclerosis with painful extremities.
- 11..Effective relief has been noted for applications of photonic stimulators for various symptoms aggravating or mimicking 1) carpal tunnel syndrome, 2) tarsal tunnel syndrome, 3) thoracic outlet syndrome, 4)interosseous nerve entrapment syndrome, 5) tardy ulnar nerve palsy, 6) sciatica and brachialgia, and 7)Tic de la Rue have responded effectively in the majority of cases.

#### *Contraindications of Photonic Stimulator:*

- 1.Never use around the eyes or look directly into it.
- 2.Metastatic cancer.
- 3.Over-treatment.

#### *Mechanism of Action:*

Blocks unmyelinated nociceptor C-fibers of the sympathetic sensory nervous system.

The photonic wand is moved by the operator along the sclerotomes, neural pathways, muscle groups, and arterial pathways from the tips of the digits all the way up to the axial spine, in a slow painting fashion.

However, the patient is told to let the operator know whenever the subject feels tingling, burning or pins and needles sensation as the wand passes over the area of the skin. At times, dysesthesia may be so surprisingly severe that the patient may even jump, thus the reasoning for use of the lower Megahertz reading on the machine initially.

Once dysesthesia is encountered by the infrared probe, the probe is moved along the area of dysesthesia in a painting action slowly until it "erases" the paresthesia over that part of the skin. (You must be continually reminding the patient to inform you as the paresthesia disappears). Then you move on to the next area where paresthesia is encountered, until all the dysesthesia and pins and needles tingling sensation, or sometimes tingling and numbness throughout the extremity or trunk, is eradicated over that 15-20 minute period of treatment. Sometimes even longer time is required for resistant cases, up to 30 minutes per session. This procedure is done until the whole area of paresthesia and

dysesthesia is either mitigated in severe cases, or totally eradicated if it is found to be patchy.

The procedure is labor intensive and will take a minimum of twenty minutes and a maximum of thirty minutes per session. If the patient, by this method, does not feel a gradual relaxation of rigid muscles, the examiner passively tries to move the patient's neck or back into flexion, extension or lateral movement, while the photonic wand is applied to the contralateral muscle groups that are under tension.

This method of treatment is not independent of neuropathic medications such as anticonvulsants, muscle relaxants such as Skelaxin, Baclofen, Neurontin and Trileptol, but is used in conjunction with these same medications, and adjunctive medications are always helpful, whether they be for vaso-motor instability, burning, tingling neuropathic dysesthesias, muscle spasm or chronic muscle spasms.

#### **A CLINICAL EVALUATION OF DITI AND NEUROMETER FOR THE DIAGNOSIS OF COLD HYPERSENSITIVITY**

Kyung-sub Lee, Yong-suk Kim

Kangnam Korean Hospital, Kyung Hee University  
#994-5 Taechi2-dong, Kangnam-ku 135-289, Seoul, Korea.

Cold hypersensitivity is considered as excessive cold sensation, particularly at limbs, even in a normal temperature. This study was designed to make more precise diagnostic standard for cold hypersensitivity by the DITI and neurometer.

30 female patients with cold hypersensitivity at limbs were chosen for this study, from the outpatients of the women's clinic at the Kangnam Korean Hospital, Kyung Hee University, Seoul, Korea, from October to December 2000. Using Dorex DITI, thermographic measurements were performed on two areas of each upper and lower limb. Average thermal deviations were  $1.35^{\circ}\text{C}$  on upper extremity,  $4.58^{\circ}\text{C}$  on lower extremity. ( $p<0.05$ ) The neurometer was used to provide objective measure of subjective sensation for assessing neuropathy by measuring current perception threshold (CPT). This data showed 84.8% with cold hypersensitivity were abnormal on CPT in this study ( $p<0.05$ ).

It is assumed that cold hypersensitivity is associated with dysfunction of peripheral sensory nerve. Detection of cold hypersensitivity by DITI and neurometer permits earlier therapeutic intervention, thereby improving the prognosis, with the potential of limiting more severe damage and reducing the cost of care. However, additional studies are needed to gain a better profile and explore potential treatment modalities.

#### **DETERMINATION OF MEAN TEMPERATURES OF NORMAL WHOLE BREAST AND BREAST QUADRANTS BY INFRARED IMAGING AND IMAGE ANALYSIS**

Jonathan F. Head, Charles A. Lipari, Robert L. Elliott,

Mastology Research Institute, Baton Rouge, LA, USA 70806 and Arizona State University East, Mesa, AZ, USA 85212.

In clinical testing it is standard to determine the normal range, and then to determine if a test can differentiate normal from diseased patients. Now with the advent of uncooled staring array digital infrared imaging systems (Prism 2000; Bioyer Group, Houston, TX) and image analysis, numerical results (mean temperatures of the whole breast and quadrants of the breast) can be used to determine the normal range and cut-off temperatures for risk assessment and detection of breast cancer.

In this study we determined mean temperatures of whole breast and breast quadrants of women being screened for breast cancer. The mean temperatures for the right breast, left breast, right upper outer quadrant (UOQ), left UOQ, right upper inner quadrant (UIQ), left UIQ, right lower outer quadrant (LOQ), left LOQ, right lower inner quadrant (LIQ), and left LIQ were  $32.79, 32.65, 32.60, 32.46, 32.91, 32.69, 32.28, 32.12, 33.29$ , and  $33.00^{\circ}\text{C}$ , respectively. Temperature differences were calculated between the right and left breasts and quadrants, and temperature differences greater than  $0.5^{\circ}\text{C}$  for whole breasts and  $1.0^{\circ}\text{C}$  for breast quadrants were considered asymmetric and abnormal. This resulted in 4 (17%) patients with differences in whole breast temperatures and 3 (13%) patients with quadrant differences from the 23-screened patients. These results are consistent with our previous results with both objective image analysis and subjective visual analysis (15% of screened patients have asymmetric infrared patterns).

Further objective infrared measurements in breast cancer patients are needed to determine the sensitivity and specificity of this objective method for risk assessment and detection of breast cancer.

#### **POTENTIAL LOCALIZATION OF BREAST CANCER BY OBJECTIVE FFT AMPLITUDE ANALYSIS OF DYNAMIC INFRARED IMAGING DATA**

Michael Anbar

Department of Physiology & Biophysics, School of Medicine and Biomedical Sciences, University of Buffalo (SUNY)

The principles of dynamic infrared imaging, or dynamic area telethermometry (DAT) and its potential use in breast cancer detection have been previously described (IEEE EMBS Magazine 19 (3): 58-62, 2000). In a recent paper (Thermology International 11(1): 11-18, 2001), we described new de-

velopments converting subjective qualitative visual analysis to a quantitative objective method.

Visual examination of images that present the spatial distribution of FFT amplitudes over the breast at a certain frequency or range of frequencies have limited diagnostic value, as it calls for human expertise. This has been the main limitation of classical static thermal imaging. On the other hand, objective computerized evaluation can produce a single diagnostic parameter that allows physicians to classify an examined breast as cancerous or benign and at the same time determine the reliability of the classification. This quantitative approach is based on extracting from the FFT amplitude data parameters that differentiate cancerous from non-cancerous breasts and determine their mean values in cancerous and non-cancerous populations, respectively at each FFT frequency. Doing so, one can identify frequencies that best differentiate between those groups and derive from them the value of the diagnostic parameter for known cancerous and non-cancerous breasts, respectively. Once this has been established, one can take the values of breasts of unknown clinical status and classify them on a quantitative scale between cancerous and non-cancerous breasts, not unlike determining the likelihood of prostate cancer by the level of PSA.

In the later paper we used FFT amplitude parameters that evaluate the whole breast and showed quite effective diagnostic differentiation between breasts with invasive cancer, breasts with ductal carcinoma in situ, and breasts with benign lesions.

More recently we employed FFT parameters that measure the localization of the effect of a suspected lesion on the thermal behavior of breast surface. Using those parameters we did not only get better differentiation between cancerous and non-cancerous breasts, but demonstrates in group statistics that frontal views of breasts are far more indicative of the presence of invasive cancer than medial or lateral views. These findings suggest that our objective diagnostic approach may not only correctly classify a breast as having cancer or not, but might also help in rough localization of the lesion.

## **BREAST CANCER: NEW PARADIGMS 21ST CENTURY INFRARED IMAGING + ANTIANGIOGENESIS THERAPY**

William Hobbins

Holistic Health Center, 5510 Medical Circle, Suite B,  
Madison, WI 53719.

In the last 25 years, the total incidence of breast cancer has gone from 140 to 198,000 cases and accounts for one-fourth of all the cancers found in females. The deaths from cancer in the same 25 years has not decreased but has increased from 43,000 to 48,000. The increased incidence of breast cancer parallels the 1960 onset of birth control pills and this may be a major factor.

Breast cancer is one cell, which has undergone 26 doublings, 160 days per doubling, to create a 1-cm lesion in 8 years.

Mammography finds indications of a presence of a cancer one year before being able to feel it whereas thermography will show an increased thermal response in the breast 6-12 months before any sign on an x-ray.

Parallel to the early detection has been the discovery as to a methodology for stopping breast cancer from growing, which was initially pointed out by Jean of Mellen-Camege University in 1978. Further work in 1988 by Judith Folkman, a Harvard University researcher, that solid cancers can be prevented, regressed and destroyed by antiangiogenesis was discovered. These substances, which are natural, nontoxic and well tolerated, are in their final stage of trial before release from the FDA for the therapy of cancer and especially breast cancer.

The ultimate use of thermography as the earliest sign of the possibility of the presence of cancer will be the primary method of screening patients cheaply and noninvasively. When a hyperthermic change in a breast occurs in a follow-up thermogram, the institution of this therapy with the antiangiogenesis factors will be started. When the thermal signal is turned off, the discretion of stopping the antiangiogenesis factor will have to be considered.

The availability of a detection of increased vascularity secondary to the angiogenesis factor of cancer followed by the proper therapy with the turn-off of the angiogenesis and the vascular signal on the breast will wipe out breast cancer in the 21st century.

# EAT General Assembly, April 27, 2001, in Vienna, SAS Palais Hotel

## K. Ammer, E.F. Ring

European Association of Thermology

The General Assembly of the national EAT Delegates took place in the evening preceding the 7<sup>th</sup> European Congress of Thermology. The following list of Agenda was distributed to the participants in due course.

### Agenda

1. President's Report
2. Secretary's Report + Financial statement
3. Election of officers and members of the committee.
4. Nominations:

*President:* Prof. Dr. Francis Ring, U.K.

*Vice-president:* Prof. Dr. Anna Jung; Poland

*General secretary and Treasurer:*

DDR. Kurt Ammer; Austria

*Members of the committee:*

Prof. Dr. I. Benkő, Hungary

Prof. Dr. R. Berz, Germany

Dr. G. Dalla Volta, Italy

Dr. M. Engel, Germany

Dr. J. R. Harding, United Kingdom

Prof. Dr. B. Wiecek Poland

Dr. H. Mayr, Austria

Prof. Dr. H. Tauchmannova, Slovakia

The president, Prof. Francis Ring opened the meeting at 19.40.

Dr. Ammer, Prof. Dr. I. Benkő, Prof. Dr. R. Berz, Dr. G. Dalla Volta, Dr. J. R. Harding, Prof. Dr. B. Wiecek and Dr. H. Mayr partici-

pated in the meeting, Prof. Dr. Anna Jung, Prof. Dr. H. Tauchmannova, Dr. M. Engel and Dr. D. Rusch have sent apologies for absence.

### Presidents Report

Since the last meeting held in Bath UK three years ago (April 1998) a number of significant events have taken place for the Association.

During the year 2000 four special meetings were held.

In February, the first ever meeting on medical uses of Infrared Imaging was held in **Copenhagen**. There was an excellent audience for a programme of papers organised by Dr Pors Nielsen of Hillerod. It is hoped that further meetings will be arranged in the future as the technology becomes more available to clinicians in Denmark.

In March a conference was held in Bath United Kingdom, to commemorate 200 years from the discovery of infrared radiation by Sir William Herschel in 1800. This was the first conference of the newly merged British Society of Thermology and the **UK Thermographic Association**. Dr Harding (Newport) is the secretary of the medical section. The programme closed with the Annual Public Lecture of The William Herschel Society, attended by some 230 delegates and Society members. R.R. Wessen of the NASA Jet propulsion laboratory gave an illustrated lecture on infrared imaging in space.

The **Deutsche Gesellschaft für Thermologie** celebrated their 20<sup>th</sup> anniversary with a special conference in Celle in August. This was the place where the Society held its inaugural meeting in 1980. Dr Gunter Bergmann the local

physician became the Hon Treasurer for the Society. Sadly he was not alive to participate in this successful and enjoyable meeting. After the scientific sessions the evening programme was held at the delightful home of Mrs Bergmann and Dr Jost Bergmann. The occasion was marked by the attendance of Redwings Jazz band led by Dr D.Rusch, the Society Secretary. (Redwings also performed on the river boat in Bath in 1994).

A residential course and conference was held by the Polish Society of Thermology in Djerba Tunisia in October. This was very successful, well attended by many Polish physicians and some other European members. The venue was outstanding, on the N. African coast, just a few meters from the beach! Despite the glorious weather, a record number of participants completed the course. Some deserved a second certificate for undertaking a jeep safari to the Sahara desert! Our congratulations to Prof. Anna Jung and the officers of the Society for the growth and success of this Society.

The year 2000 was also the time for our **European Congress of Thermology** held in Italy, close to Lake Garda. Dr Georgio Dalla Volta organised a splendid conference in a memorable setting. A Ducal palace set on the hills above the lake provided the special setting for a full and varied scientific programme of papers. Our special thanks to Dr Dalla Volta are due for this important meeting. There had been problems with the original venue, which became unexpectedly cancelled at short notice. The changed arrangements were therefore added responsibility to our host!

**The Austrian Society of Thermology and the Hungarian Thermographic Society** continue to hold regular meetings that attract scientists and physicians from other countries. Members of the EAT have been able to attend and present papers at a number of International meetings including Japan and the USA. The IEEE medical meetings held each year have had a growing number of papers devoted to clinical IR imaging, and this will continue during 2001 in Turkey. The last meeting held in Bath UK was a joint programme with the Royal Photographic Society (Imaging Science) and the European Federation for the Scientific Image. EFSI also arranged a special 3 day conference at Photokina, Köln during 2000, which is the largest Imaging exhibition in Europe. The

president was invited to overview the progress in medical thermography at this important meeting.

The European Journal of Thermology has now undergone a second change of title, to become **Thermology International**. We would all like to express our thanks and support for the Editor in Chief, Dr Kurt Ammer for his consistent hard work to get the journal established. The flow of papers, and increased numbers of subscribers are essential for the future stability of this journal. We have the ability to speak with one voice in many countries of the world. As the circulation increases, hopefully in the future, we hope to bring the journal to the stage where it will be cited in the major reference indeces throughout the world.

Our conference timing, originally constituted for once every four years was modified to three, in order to slot in with the frequency of the International College Conference programme. For this reason we are today hosting this International Meeting in Europe, and look forward to the next European Congress in 2003, with the International Congress next due in 2004.

### **Secretarys Report**

Dr. Ammer, General Secretary and Treasurer, reported the financial status of the EAT. The main reason for spending the money of the EAT is the production of the Journal "Thermology international". However, this publication is still dependent on the important financial support of the Ludwig Boltzmann Research Institute for Physical Diagnostics, without this support only 2 instead of 4 issues/year would be produced. This means the number of actual subscribers is still to small to allow a financially independent production of the journal.

The secretary suggested also a new regulation for membership fees. The actual procedure of subscription to the EAT favours big societies which pay a smaller sum per member than small societies. For example, the smallest subscription fee at the moment is 350ATS for societies up to 10 members. This means a sum of 35 ATS /year/ member in case of 10 members, but 70 ATS in case of 5 members. The same relationship is true for all the other steps of this subscription scheme. Dr Ammer proposed to change the subscription fee, which was established at the meeting in Cesena in 1990, towards a new regulation based on the actual

numbers of members within a national society. A sum of 3 EURO per member was discussed and the delegates agreed to follow this new scheme from the year 2002 on. This very moderate increase of membership fee per member (approximately 41 ATS instead of 35 ATS) provides a higher rate of fairness, but will not increase the total income of the EAT.

#### **Election of officers and members of the committee**

The delegates accepted the nominations for officers and members of the Committee and elected them unanimously.

Prof Francis Ring will continue as President and Dr. Kurt Ammer remains as General Secre-

tary and Treasurer. The new Vice-President is Prof Dr. Anna Jung from Poland. Hopefully, this position will strengthen the very active Polish Society of Thermology, which hopes to organize the next, 9<sup>th</sup> European Congress of Thermology in Poland. Prof. R.Clark, M.L Calcina-Goff, Dr.Rusch and Prof L.Thibault de Boesinghe have now left the Committee and Dr. J-M.Engel, and Prof.B.Wiecek have become new members of the Committee. All elected committee members and officers accepted their appointments in the EAT.

Finally, Prof. Ring closed the general assembly at 21.30.

## Newsletter

### Course and Workshop on Thermal Imaging in Medicine at the University of Glamorgan

The Medical Imaging Group at the School of Computing, University of Glamorgan, has continued in the effort to become a center of excellence for thermal imaging. After hosting the Annual Conference of the Medical Thermology Group of UKTA in March, a 3 day course on Thermal Imaging in Medicine together with a workshop on Advances in Medical Thermography took place on July 3-6, 2001. The course was acknowledged and participants were certified by the University of Glamorgan.

Prof Bryan Jones gave a short introduction in the basic physics of thermal imaging. Prof Francis Ring reviewed the history of temperature measurement in medicine with a special focus on thermal imaging. He showed the enormous technical progress of the equipment used for this technique. Dr. Peter Plassmann reviewed the needs and the facilities of available computer software to evaluate thermal images quantitatively.

Dr. Kurt Ammer talked about the principles of thermal physiology. He included information on other physiological systems such as circulation and autonomic nerve system in his lecture, because these systems are related or partly involved in the process of temperature regulation of the human body.

The second day started with Dr. Richard Harding's talk on clinical applications of thermal imaging in vascular disorders. He summarized his personal experience in this field covering the topics of deep venous thrombosis, diabetic foot ulcers and vasospastic disease. Prof Ring continued with an overview on provocation tests used in medical thermal imaging with a special focus on cold water challenge. Dr. Ammer described provocation tests using mechanical challenges such as positioning, exercise applied in body parts of interest or performing

special tasks including type writing. A practical demonstration of the cold water challenge closed the morning session.

After lunch Dr. Ammer presented examples of causes of temperature increase and temperature decrease respectively. He stated that knowing the temperature measured in the region of interest is not enough information to interpret the cause of this distinct temperature. Pitfalls in interpretation were shown and the difficulty of interpretation was discussed.

Dr. Plassmann lectured on the principles of electronic image capturing and gave an introduction in the software programme CTERM, which is based on a programme used for the evaluation of thermal images at the Department of Clinical Measurements of the Royal National Hospital for Rheumatic Diseases, and that was further developed by Dr. Plassmann.

This programme was used for the practice session in the Thermal Physiology Lab, when each participant practiced image capturing according to recently modified standard views. Defining regions of interest on provided thermal images of the knees and the upper arm was another task to learn. Comparison of the mean values of regions of interest defined by the participants showed a high degree of agreement both within and between observers.

A short lecture on producing a thermographic report given by Dr. Ammer closed this practice session.

Dr Plassmann demonstrated the use of the Archive CD of thermographic papers, which was together with the book entitled "Thermal Imaging in Medicine and Biology" included in the registration fee of this course. He also opened the closing session which was dedicated to future developments of thermal imaging in medicine with a talk on recent and future developments in digital cameras and image processing. Prof. Ring discussed the problem

of integration of thermal imaging into digital imaging information systems in hospitals. He focused the DICOM systems which seems to become the main image information system in british hospitals. A short overview on facilities of medical education, journals and conferences for applications of temperature in medicine closed the course.

A workshop on **Advances in Medical Thermography** followed the course on July 6. Rod Thomas, phycist from Swansea, presented an interested overview on recent developments in infrared detectors and discussed advantages and disadvantages of the focal plane array technology. In his second talk heat generation due to surgical infrared lasers was shown. A model of heat exchange in this condition was presented and not yet answered questions of heat distribution in the superficial skin layers were raised.

D.Gibbs reviewed reasons for reconsideration of thermal imaging as a screening tool for breast cancer. Richard Harding presented a pilot study using a hand-hold radiometer for bedside diagnosis of Raynaud's phenomenon. Kurt Ammer showed that the change of temperature of finger tips during computer keyboard operation is related to the duration of typing. In a second talk he asked for computer assisted identification of hot spots on thermal images, as the inter-and also the intra-observer repeatability of visually detected hot spots from thermal images of fibromyalgia patients was unsatisfactory low.

Prof Ring presented proposals for standardising a protocol for medical thermal imaging. Most of these proposal has been successfully applied in the course organized in the day before this workshop. He reported also the project of the Thermal Physiology Lab to build a reference database of normal thermal images of healthy subjects. Definition of health and generation of easily reproducible standard views and repeatable positioning of regions of interest on thermal images being the most difficult tasks of this project.

Prof. Anna Jung, vice-president of the European Association of Thermology, from Warsaw, Poland, presented temperature changes on the back, which have been seen in patients suffering from obstructive pulmonary disease. The level of temperature changed after pharmacological induced relaxation of the smooth

bronchial muscles. Thermal phenomena on the body surface might be caused by increased activity of skeletal muscles engaged in the breathing mechanism due to high resistance in the air flow.

All papers raised interesting discussion with the audience. It is hoped, that the activity of the University in promotion of thermal imaging will continue. The next course for Thermal Imaging in Medicine will take place in November, and a number of people have already expressed their intrest in participation.

#### **4th Congress of the Polish Society of Thermology**

The Polish Society of Thermology, that hold its Annual Conference last year in Djerba, returns this year to Zakopane on September 28-30, 2001, for the 4<sup>th</sup> Polish Thermology congress. As last year a certified course on Practical application of thermography in medical diagnostics is combined with the meeting. New results of research on thermal imaging from Poland, Germany and United Kingdom will be presented at this meeting. Abstracts of the conference will appear in the next issue of this journal.

For further information contact

Prof. Anna Jung,  
Clinics of Paediatrics and Paediatric Nephrology,  
00-909 Warsaw, Szaserow str. 128, Poland.

Tel: 48226817236 Fax:48226816763  
email:ajung@cskwam.mil.pl

#### **Announcement for the Guenter Bergmann Award 2001**

The Guenter Bergmann Award is announced for the second time according to the conditions of the award

The Award will be given in a 2 years cycle for outstanding work in the field of clinical application or clinical research of thermal imaging. Papers in German or English from around Europe are welcomed.

Manuscripts should meet the standard of scientific papers and be consistent with the instructions for authors of the journal "Thermology international". A thesis will not be accepted. Members of the committee of the German Society of Thermology are not eligible for the Award.

The award winning paper will be published in the journal "Thermology international". Other submitted papers will be also sent the journal "Thermology international" for possible publication.

The Award Committee will consist of  
A committee member of the German Society of Thermology  
A member of the Bergmann family  
A known personality as chairman of the committee.

The jury is allowed to consult external experts for reviewing papers. Deadline for submission (original manuscript and 2 copies) is August 31, 2001.

Address for submissions is  
The President of the German Society of Thermology  
Dr Joachim-Michael Engel M.D.  
marked PERSONAL  
Rheumaklinik Bad Liebenwerda  
Dresdener Straße 9  
D-04924 Bad Liebenwerda,  
Germany

## Veranstaltungen (MEETINGS)

### 29.-30.September 2001 4th Congress of the Polish Society of Thermology in Zakopane

#### *Conference Venue:*

"HYRNY" guest house  
Zakopane, Pilsudskiego str 20

#### *Course schedule*

Practical application of thermography in medical diagnostics

Friday 28.9.2001 19.00- 20.30

Saturday 29.09.2001 12.40-13.45

Sunday 30.09.2001 16.30-17.30

Sunday 30.09.2001

Ship excursion on Pieniny Reservoir  
visiting Niedzica Castle

#### *Conference schedule*

|                     |             |
|---------------------|-------------|
| Saturday 29.09.2001 | 9.00-12.30  |
|                     | 15.30-18.00 |
| Sunday 30.09.2001   | 15.00-16.30 |

#### *Information*

Prof.Dr.A.Jung

Pediatric and Nephrology Clinic,  
Central Clinical Hospital, Military University,  
School of Medicine. Szaserow 128 str  
00-909 Warsaw-60, PL

Tel/fax +48 22 6817236  
email: ajung@cskwam.mil.pl

**November 2001**  
**Course on Thermal Imaging in Medicine at the**  
**University of Glamorgan**

**Speakers:** Dr K Ammer (KA) Prof F Ring (FR), Dr P Plassmann (PP).

**Timetable:**

**1st day**

**A Theoretical and Historical basis of Thermal Imaging in Medicine**

|                                                      |                                       |      |
|------------------------------------------------------|---------------------------------------|------|
| 10.30-11.20am                                        | History and development of IR Imaging | (FR) |
| 11.35 – 12.25                                        | Physical Principles of heat transfer  | (FR) |
| <i>12.30pm Lunch Green Room – Gallery Restaurant</i> |                                       |      |
| 1.30-2.20 pm                                         | Principles of Thermal Physiology 1    | (KA) |
| 2.20-2.30 pm                                         | Film (cold and warm baths)            |      |
| 2.30-3.20 pm                                         | Principles of Thermal Physiology 2    | (KA) |
| 3.20-3.50                                            | <i>break Bytes Cafe</i>               |      |
| 4.00-5.00pm                                          | Standard protocols for image capture  | (FR) |

**2nd day B Clinical Applications of Thermal Imaging**

|                                                    |                                     |      |
|----------------------------------------------------|-------------------------------------|------|
| 9.00 – 9.40am                                      | Provocation tests 1                 | (FR) |
| 9.45- 10.25am                                      | Provocation tests 2                 | (KA) |
| <i>10.25 – 10.50am break Bytes Cafe</i>            |                                     |      |
| 11.00 – 11.30                                      | Film (living body)                  |      |
| 11.30- 12.30                                       | Lab demonstration cold stress test  |      |
| <i>12.30pm Lunch Green Room Gallery Restaurant</i> |                                     |      |
| 1.45-2.30pm                                        | Causes of temperature increase      | (KA) |
| 2.30-3.00                                          | Causes of temperature decrease      | (KA) |
| 3.00 – 3.30pm                                      | <i>break Bytes Cafe</i>             |      |
| 3.30- 4.00pm                                       | Image capture                       | (PP) |
| 4.00 – 5.00pm                                      | Introduction to CTERM software (PP) |      |

**3rd day C Practical session capturing and analysing images**

|                                                    |                                                           |       |
|----------------------------------------------------|-----------------------------------------------------------|-------|
| 9.00-10.15m                                        | Picture composition, standard views and resolution        | (FR)  |
|                                                    | Analysis of thermograms regions of interest etc.          | (FR)  |
| <i>10.15-10.40 break</i>                           |                                                           |       |
| 10.40 t- 12.15                                     | Practice session in J150                                  |       |
| 12.15 – 12.30                                      | Producing a thermographic report                          | (KA)  |
| <i>12.30pm Lunch</i>                               |                                                           |       |
| 1.30 – 2.00pm                                      | Archive CD of thermographic papers demo                   | (PP)  |
| 2.00-2.45pm.                                       | <b>Future developments of Thermal Imaging in Medicine</b> |       |
| 1.                                                 | Digital cameras and processing                            | (PP), |
| 2.                                                 | Integration into hospital DICOM systems                   | (FR)  |
| <b>Medical Education, Journals and conferences</b> |                                                           | (KA)  |



**March 1 - 2, 2002**

**The 8th International Conference on Infrared Thermal Imaging**

TAMPA, FLORIDA U.S.A.

*Sponsored by ASI Inc.*

*Conference Times:*

Friday, March 1, 2002 - 9:00 a.m. - 5:00 p.m.  
Saturday, March 2, 2002 - 9:00 a.m. -1:00 p.m.

*Location:* Tampa, Florida

*Hotels:* Hyatt Regency, Marriott Airport Hotel, Radisson, Wyndham Westshore, Sheraton Suites, Hampton Inn Westshore.

*Airport:* Tampa International Airport

**REGISTRATION INFORMATION**

Get registration form at  
<http://www.thermology.com/conference8.htm>

Print the registration form and send via  
Regular Mail with Conference Fee

*Fee:* \$195 per person - if registered by  
January 1, 2002 - space is limited

Payable to: Ashwin Systems International  
Inc. P.O. Box 1014, Dunedin, FL 34697  
U.S.A. - 727/785-5844

**April 1-5, 2002 - Orlando**

**Thermosense XXIV, Opryland Hotel in  
Orlando, FL, USA**

Abstract Due Date: 20 August 2001,  
Manuscript Due Date: 7 January 2002

All authors are STRONGLY ENCOURAGED to submit their abstracts by the due date using the Web form available on the SPIE Web site. If this is not possible, please choose only one of the following options:

E-mail each abstract separately to:  
[abstracts@spie.org](mailto:abstracts@spie.org) in ASCII text (not encoded) format. Important: to ensure receipt and proper processing of your abstract, the Subject line must include only the conference code. Example: Subject: or50

or MAIL three copies of your abstract to: AeroSense SPIE, P.O. Box 10, Bellingham, WA 98227-0010 USA

Shipping Address: 1000 20th Street, Bellingham, WA 98225-6705 USA

or FAX one copy to SPIE at 360/647-1445 (send each abstract separately).

Your abstract must include the following:

**1.SUMMIT TO:**

conference code 50 (Example) [or50]

**2.Submit each abstract to one conference only.**

(Conference Title) ThermoSense XXIV (Conference Chair) Xavier P. Maldague

**3.ABSTRACT TITLE**

**4.AUTHOR LISTING** (principal author first) For all authors: First (given) name (initials not acceptable), Last (family) name, Affiliation. Mailing address, telephone, fax, and e-mail address.

**5.PRESENTATION** Indicate your preference for "Oral Presentation" or "Poster Presentation." Placement is subject to chairs' discretion.

**6.ABSTRACT TEXT** Approximately 250 words.

**7.KEY WORDS** List a maximum of five key words.

**8.BRIEF BIOGRAPHY** (of principal/presenting author) Approximately 50 words.

*Further information*

[www.themosense.org](http://www.themosense.org)

**27. April 2002, Wien**

**15th Thermological Symposium of the  
Ludwig Boltzman Research Institute for  
Physical Diagnostics and the  
Austrian Society of Thermology**

*Theme:* Standards in Thermology

*Venue:* SAS Raddison Palais Hotel, Vienna

*Information:*

DDr.Kurt Ammer

Ludwig Boltzman Research Institute for  
Physical Diagnostics, Hanuschkrankenhaus,  
Heinrich Collinstr.30;  
A-1140 Vienna;Austria

Tel: +43 914 97 01 Fax:+43 914 92 64

Emal:KAmmert 1950@aol.com

**September 24-27, 2002**

**6th International Conference on  
quantitative infrared thermography,  
QIRT'2002, in Dubrovnik, Croatia**

Organized by : University of Zagreb  
(Croatia) Faculty of Mechanical Engineering  
and Naval Architecture

Abstracts covering a maximum of two pages  
(A4 format) including figures must be mailed  
to the Seminar Secretariat before Jan. 15th,  
2002, indicating clearly the title, the names of  
authors, affiliation and address with phone,  
fax and e-mail, if possible. The organisers  
strongly recommend Internet exchange. Authors  
will be informed about final acceptance  
of their communications by the Scientific  
Committee till March 15<sup>th</sup>, 2002.

**QIRT'2002 DEADLINES**

Nov.30<sup>th</sup>, 2001 Preliminary application by re-  
ply letter or internet registration.

Jan. 15<sup>th</sup>, 2002 Deadline for abstracts.

Mar. 15<sup>th</sup>, 2002 Information about the  
acceptance of the paper - final instructions  
for authors.

Apr. 15<sup>th</sup>, 2002 Mailing of final announce-  
ment, detailed program and registration form.

Sept. 1<sup>st</sup>, 2002 camera-ready paper

**SCIENTIFIC COMMITTEE**

*Chairmen*

D. Balageas, ONERA, France

G. Busse, IKP, Universität Stuttgart, Germany

G. M. Carlomagno, Università di Napoli, Italy

*Members*

D. P. Almond, University of Bath, U.K.

J.-M. Buchlin, Institut von Karman, Belgium

X. Maldague, Université Laval, Canada

B. Wiecek, Technical University of Lodz,  
Poland

J. Rantala, Nokia Research Center, Finland

V. P. Vavilov, Tomsk Polytechnic University,  
Russia

S. Svaic, University of Zagreb, Croatia

*Local Chairman*

S. Svaic, Faculty of Mechanical Engineering  
and Naval Architecture, University of Za-  
greb, Croatia

*Information*

Please reply by e-mail on the site:

<http://www.fsb.hr/Qirt2002>

or return a reply letter to the conference se-  
cretary:

QIRT'200

2 Igor Sundov; Faculty of Mechanical Engi-  
neering and Naval Architecture,

I. Lucica 5, 10000 Zagreb, Croatia

Phone: ++385 1 616 8174; Fax.: ++385 1 616 5940

# Thermology

## international

**Dr. Kurt Ammer**

Österreichische Gesellschaft für Thermologie

Hernalser Hauptstr.209/14  
A-1170 Wien  
Österreich

This journal is a combined publication of the Ludwig Boltzmann Research Institute for Physical Diagnostics and the Austrian Society of Thermology. It serves as the official publication organ of the European Association of Thermology (EAT), the American Academy of Thermology, the German Society of Thermology, the UK Thermography Association (Thermology Group) and the Austrian Society of Thermology. An advisory board is drawn from a panel of international experts in the field. The publications are peer-reviewed.

ISSN -1560-604X  
Thermology  
international

## international

**Dr. Kurt Ammer**

Österreichische Gesellschaft für Thermologie

Hernalser Hauptstr.209/14  
A-1170 Wien  
Österreich

Diese Zeitschrift ist eine gemeinsame Publikation der Ludwig Boltzmann Forschungsstelle für Physikalische Diagnostik und der Österreichischen Gesellschaft für Thermologie.

Sie dient als offizielles Publikationsorgan der Europäischen Assoziation für Thermologie (EAT), der Amerikanischen Akademie für Thermologie, der Deutschen Gesellschaft für Thermologie, der Britischen Thermographie Assoziation (Thermologie Gruppe) und der Österreichischen Gesellschaft für Thermologie.

Hochangesehene Thermologen sind Mitglieder des wissenschaftlichen Beirates dieses vidierten Fachblattes.

ISSN -1560-604X  
Thermology  
international

Please begin my subscription to  
**THERMOLOGY INTERNATIONAL**  
(formerly European Journal of Thermology)

---

Name

---

Address

---

City

---

State

---

Zip

---

Signature

---

Date

---

I am a registered member of the

- Hungarian Society of Thermology
- UK Thermography Association
- Italian Association of Thermology
- Polish Society of Thermology
- Deutsche Gesellschaft für Thermographie

For members of the societies mentioned above the subscription rate for 4 issues/year is 440.- Austrian Schilling mailing costs included. All other subscribers have to pay 510.- ATS + 240.- ATS for mailing outside Austria, in total 750.-ATS (US \$ 75.-)

Payment should be sent (without any charges for the European Association of Thermology) to the following bank account: Bank Austria, Vienna, Austria, bank number:20151, account number: 965023054

Ich bestelle ein Abonnement der  
**THERMOLOGY INTERNATIONAL**  
(vormals EUROPEAN JOURNAL OF THERMOLOGY )

---

Name

---

Adresse

---

Ort

---

Staat

---

PLZ

---

Unterschrift

---

Datum

---

Ich bin Mitglied der

- Ungarischen Gesellschaft für Thermologie
- UK Thermography Association
- Italian Association of Thermology
- Polish Society of Thermology
- Deutschen Gesellschaft für Thermographie

Für Mitglieder der oben erwähnten Gesellschaften beträgt der Abonnementpreis für 4 Ausgaben inklusive Versandkosten ATS 440.-. Für alle anderen beträgt der Preis ATS 510.- + ATS 240.- Versandkosten außerhalb Österreichs, somit einen Gesamtpreis von ATS 750.-

Die Bezahlung wird spesenfrei für den Empfänger auf das folgende Bankkonto der Europäischen Assoziation für Thermologie erbeten:

Bank Austria, Wien, Österreich, Bankleitzahl: 20151  
Kontonummer: 965023054